- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- An essay in natural modal logic
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
An essay in natural modal logic Apostoli, Peter J.
Abstract
A generalized inclusion (g.i.) frame consists of a set of points (or "worlds") W and an assignment of a binary relation Rw on W to each point w in W. generalized inclusion frames whose Rw are partial orders are called comparison frames. Conditional logics of various comparative notions, for example, Lewis's V-logic of comparative possibility and utilitarian accounts of conditional obligation, model the dyadic modal operator > on comparison frames according to (what amounts to) the following truth condition: oc>13"holds at w" if every point in the truth set of a bears Rw to some point where holds. In this essay I provide a relational frame theory which embraces both accessibility semantics and g.i. semantics as special cases. This goal is achieved via a philosophically significant generalization of universal strict implication which does not assume accessibility as a primitive. Within this very general setting, I provide the first axiomatization of the dyadic modal logic corresponding to the class of all g.i. frames. Various correspondences between dyadic logics and first order definable subclasses of the class of g.i. frames are established. Finally, some general model constructions are developed which allow uniform completeness proofs for important sublogics of Lewis' V.
Item Metadata
Title |
An essay in natural modal logic
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1992
|
Description |
A generalized inclusion (g.i.) frame consists of a set of points (or "worlds") W and an assignment of a binary relation Rw on W to each point w in W. generalized inclusion frames whose Rw are partial orders are called comparison frames. Conditional logics of various comparative notions, for example, Lewis's V-logic of comparative possibility and utilitarian accounts of conditional obligation, model the dyadic modal operator > on comparison frames according to (what amounts to) the following truth condition: oc>13"holds at w" if every point in the truth set of a bears Rw to some point where holds.
In this essay I provide a relational frame theory which embraces both accessibility semantics and g.i. semantics as special cases. This goal is achieved via a philosophically significant generalization of universal strict implication which does not assume accessibility as a primitive. Within this very general setting, I provide the first axiomatization of the dyadic modal logic corresponding to the class of all g.i. frames. Various correspondences between dyadic logics and first order definable subclasses of the class of g.i. frames are established. Finally, some general model constructions are developed which allow uniform completeness proofs for important sublogics of Lewis' V.
|
Extent |
4055574 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2008-09-18
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0098835
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
1993-05
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.