UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Monotone regression functions Zuo, Yanling


In some applications, we require a monotone estimate of a regression function. In others, we want to test whether the regression function is monotone. For solving the first problem, Ramsay's, Kelly and Rice's, as well as point-wise monotone regression functions in a spline space are discussed and their properties developed. Three monotone estimates are defined: least-square regression splines, smoothing splines and binomial regression splines. The three estimates depend upon a "smoothing parameter": the number and location of knots in regression splines and the usual [formula omitted] in smoothing splines. Two standard techniques for choosing the smoothing parameter, GCV and AIC, are modified for monotone estimation, for the normal errors case. For answering the second question, a test statistic is proposed and its null distribution conjectured. Simulations are carried out to check the conjecture. These techniques are applied to two data sets.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.