- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Monotone regression functions
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Monotone regression functions Zuo, Yanling
Abstract
In some applications, we require a monotone estimate of a regression function. In others, we want to test whether the regression function is monotone. For solving the first problem, Ramsay's, Kelly and Rice's, as well as point-wise monotone regression
functions in a spline space are discussed and their properties developed. Three monotone estimates are defined: least-square regression splines, smoothing splines and binomial regression splines. The three estimates depend upon a "smoothing parameter":
the number and location of knots in regression splines and the usual [formula omitted] in smoothing splines. Two standard techniques for choosing the smoothing parameter, GCV and AIC, are modified for monotone estimation, for the normal errors case. For answering the second question, a test statistic is proposed and its null distribution conjectured. Simulations are carried out to check the conjecture. These techniques are applied to two data sets.
Item Metadata
| Title |
Monotone regression functions
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
1990
|
| Description |
In some applications, we require a monotone estimate of a regression function. In others, we want to test whether the regression function is monotone. For solving the first problem, Ramsay's, Kelly and Rice's, as well as point-wise monotone regression
functions in a spline space are discussed and their properties developed. Three monotone estimates are defined: least-square regression splines, smoothing splines and binomial regression splines. The three estimates depend upon a "smoothing parameter":
the number and location of knots in regression splines and the usual [formula omitted] in smoothing splines. Two standard techniques for choosing the smoothing parameter, GCV and AIC, are modified for monotone estimation, for the normal errors case. For answering the second question, a test statistic is proposed and its null distribution conjectured. Simulations are carried out to check the conjecture. These techniques are applied to two data sets.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2010-10-22
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
| DOI |
10.14288/1.0098248
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Campus | |
| Scholarly Level |
Graduate
|
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.