UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Reproductive and population biology of Pacific ocean perch (Sebastes alutus (Gilbert)) Leaman, Bruce Michael


This study examines the reproductive and population biology of a long-lived (80-y life span) fish, Sebastes alutus (Gilbert). The objectives of the study were (i) to establish whether groups of adult S. alutus delineated by exploitation histories could be objectively identified as separate sub-populations; (ii) to identify the effects of density-independent mortality caused by exploitation, and relate them to predictions of life history theory (iii) to examine the long-term implications of this mortality pressure on the dynamics of the species; and (iv) to determine the contribution of these results to the development of management programs for this species. A lernaepodid copepod gill parasite (Neobrachiella robusta (Wilson 1912)) was used for the first time as a biological tag to delineate separate sub-populations (stocks) of a commercial fish. Intensity of infection and mean characteristics of the parasite population per fish achieved complete separation between stocks indistinguishable with morphological features. Discriminant analysis showed the parasite also functioned moderately well (34-76% correct classification) as a stock discriminator of individual fish. Use of auxilliary information on the stock identity of hosts improved the classification power of the discriminant function. The density-independent mortality of the commercial fishery on S. alutus has severely truncated the age spectrum of some stocks. Some compensatory growth changes for fish in the stocks under the strongest selection are evident. Examination of the variance structure of female length at age suggests an inverse relation of mortality and growth rate giving rise to smaller, older fish. Smaller, older fish can be accounted for using the same growth function as for the larger fish seen at younger ages, and these similar growth forms can give an aggregate appearance of quadratic growth. Growth changes do not yield significant differences in size at maturity, although age at maturity changes, implying developmental or environmental constraints on maturation. Fecundity estimation methodology was evaluated and the volumetric method previously used for this species found to be inferior to a gravimetric method. Significant differences in fecundity as a function of body variables were found among exploitation groups. Significant differences in oocyte characteristics among stocks were found, with size and age shown to have separable effects. Lightly exploited stocks had significantly higher oocyte quality (as expressed in oocyte weight), effected through differences in the oocyte diameter-oocyte weight relationship. Histological examination details the developmental sequence of oocytes and establishes the maturation period of oocytes and fish. Northern stocks were shown to have significantly larger oocytes. Follicular atresia is suggested as an alternative energy source to the embryo death which has been presented as the source for matrotrophy in this genus. Complete atresia of a ripe oocyte complement was identified in this genus for the first time. No evidence of reproductive senescence was found. The hypothesis of increasing reproductive effort with age, including the independence of age and size effects, was confirmed. No evidence of reproductive cost could be found. The hypothesis of increased reproductive effort earlier in life as a mechanism to offset increased adult mortality was supported. However, the potential of this increase, achieved by growth rate increases, is much less than is needed to compensate for the reduction in lifetime reproductive effort caused by high fishing mortality. The effects of changing mortality rates on several reproductive value indices was examined with deterministic and stochastic simulation models. Cohort reproductive value is the most sensitive of the indices examined and may be the most robust to measurement error. Reproductive value is a more sensitive index of population state than other indices in use and may play a role in determination and evaluation of optimal harvest policies. However, an experimental approach to its use will be required.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.