UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effect of cold storage duration and soil temperature on the photosynthetic ability of Picea glauca seedlings Harper, George James


In response to concern over the failure and poor growth of many interior and white spruce plantations in British Columbia the effect of storage duration and soil temperature on the photosynthetic ability of white spruce seedlings was explored. Seedlings of Picea glauca were dark freezer stored (-5°C) from 9.6 to 30.6 weeks, thawed and grown for 28 days in a growth chamber at three different soil temperatures (3,7,11°C). During this period gas exchange variables and chlorophyll fluorescence kinetics were followed. Seedlings stored for periods of 22 weeks or longer had significantly lower rates of photosynthesis dependent on the outplanting soil temperature. Stomatal conductance was initially low upon outplanting and showed a recovery period of 4-7 days duration. The level of stomatal conductance increased in seedlings after they were stored for 26.1 weeks or longer. Chlorophyll fluorescence measurements of seedlings stored from 22 to 30.6 weeks showed a recovery period in photosynthetic efficiency (Fy/Fp) related to changes in photosynthesis. A decrease in seedling Fy/Fp with increasing periods of storage was noted at day 5 after outplanting. A disproportionate increase in new root growth with the increasing soil temperatures, measured after the 28 day growth period, suggested a soil temperature threshold for root growth exists between the 7°C and ll°C. In contrast, the stomatal conductance and photosynthesis results suggest the seedling shoots were not directly affected by the cold soil temperatures. In general, the results suggest Picea glauca seedlings stored longer than 22 weeks in freezer conditions have reduced photosynthetic ability, root growth and overall vigor. Fluorescence and bud break data suggest the reduction was possibly due to freezing damage sustained in storage affecting photosynthetic electron transport through photoinhibition upon returning seedlings to the light.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.