UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Infiltration in water repellent soil Barrett, Gary Edward


Observations made at Goat Meadows - a small sub-alpine basin located near Pemberton, British Columbia -demonstrated that a layer which is either water repellent or has only a limited affinity for water is present at most vegetated sites. The layer is typically a few centimetres in thickness, and is usually located at or near the top of the profile: it was present only in the zone of accumulation of organic matter. The spatial distribution of the layer did not appear to be related to the distribution of any particular species of plant. Sampling of sub-alpine sites in the Cascade, Selkirk, and Purcell Mountains indicated that such layers are common in the alpine - sub-alpine ecotone of southern British Columbia. The relationship between ponding depth and infiltration rate was explored through experiments conducted on samples collected near Ash Lake, in Goat Meadows. These samples were chosen for analysis because the repellent layer was in excess of thirty centimetres thick at this site. Infiltration rates remained below 2x10⁻⁹ m/s for all samples, even given ponding depths of up to forty centimetres. Breakthrough of liquid water was not observed, even after one month, which implies that most of the infiltration occurred as vapour transfer. In order to observe the movement of liquid water through water repellent media, a plexiglas cell was constructed. A synthetic water repellent sand with uniform surface properties was used as the medium. It was found that up to some critical depth, there was no entry of water into the medium. As the ponding depth was increased in steps, the front would advance in steps: it remained stationary between these step-increases in ponding depth. As the front advanced, protuberances or "fingers" began to develop. At some critical ponding depth, a finger would grow without bound. These observations pose a challenge to existing models of infiltration, since it appears that heterogeneity at the scale of individual pores must be invoked to explain them, but it is usually assumed that the properties of a porous medium are continuous at this scale. The thermodynamics of filling and emptying of pores is considered with emphasis on the effects of pore shape and of variations in the physicochemical properties at the scale of the pore. This thermodynamic analysis provides the conceptual basis for development of a model of infiltration in which pore-scale heterogeneity is preserved. Although it was not developed as such, the model follows the approach of cellular automata, in which local relations between pores or "cells" govern the behaviour of the system. The model replicated the observations of infiltration into synthetic water repellent porous media well: both the halting advance of the front as the ponding depth was increased and the development of fingers were simulated. The fact that such complex behaviour was predicted using only a simple set of physically based rules confirms the power of the approach.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.