The Open Collections website will be undergoing maintenance on Wednesday December 7th from 9pm to 11pm PST. The site may be temporarily unavailable during this time.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A tolerant axisymmetric wind tunnel Premnath, S. M. Jason

Abstract

A solution to the current problem of wind tunnel wall interference could be achieved by ventilating the test section and thereby controlling the flow pattern around the model. The motivation for the slotted wall test section arises from the fact that a fully open jet and a fully closed jet introduce corrections of opposite sign to the wind tunnel data. This current work is limited to axisymmetric wind tunnels and solid blockage corrections. Such a tolerant axisymmetric wind tunnel (TAWT), which does not need any correction to the measured flow quantities and which is also independent of the test model shape and size would find wide application in the field of industrial aerodynamics. A numerical model based on a surface singularity potential flow method showed that at 70% OAR (open area ratio) for models of size up to 25% blockage and for three different shapes the tunnel design would yield results (coefficient of pressure) with less than 2% error while such models might need up to 75% data correction if tested in a solid wall wind tunnel. Experiments indicated good agreement with the numerical investigation and at 60% OAR the TAWT gave results close to free air results for all the models tested (up to 25% blockage).

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.