- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Lithium intercalation in titanium based oxides and...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Lithium intercalation in titanium based oxides and sulfides Colbow, Kevin Michael
Abstract
The Li-Ti-S ternary system was investigated. The elements and/or compounds, such as lithium sulfide, titanium disulfide and titanium trisulfide, were combined at high temperature (typically 500-900°C). The synthesized compounds containing one or more phases were structurally characterized using x-ray powder diffraction. When Lix TiS₂, (0 ≤ x ≤ 1) was synthesized at elevated temperature, a new polytype, 3R-LixTiS₂, was found for some values of x. The regions of stability of the 3R polytype and the well known 1T polytype are presented. Lithium can be intercalated or de-intercalated from both polytypes at room temperature. Ambient temperature Li/3R-LixTiS₂ cells have higher average voltages than Li/1T-Li TiS₂, cells. The lithium spinel oxides are another class of materials receiving attention as cathode materials in lithium secondary batteries. LiTi₂0₄ is metallic, has the cubic spinel structure and reacts with one further lithium atom to form Li₂Ti₂0₄. The related spinel Li₄/₃Ti₅/₃⁰₄͵ which is electrically insulating, also reacts reversibly with one lithium atom. Both Li₂Ti₂0₄ and Li₄/₃Ti₅/₃⁰₄͵ cells cycle reversibly, but have subtle differences in their voltage profiles. The difference in cell behaviour was interpreted based on the band structure of Li₁˖xTi₂₋x⁰₄. The mixed spinels LiMnyTi₂₋y⁰₄ (0 ≤ y ≤ 2) were also investigated. These compounds were synthesized at high temperature but their performance as cathodes in lithium batteries was not encouraging.
Item Metadata
Title |
Lithium intercalation in titanium based oxides and sulfides
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1988
|
Description |
The Li-Ti-S ternary system was investigated. The elements and/or compounds, such as lithium sulfide, titanium disulfide and titanium trisulfide, were combined at high temperature (typically 500-900°C). The synthesized compounds containing one or more phases were structurally characterized using x-ray powder diffraction. When Lix TiS₂, (0 ≤ x ≤ 1) was synthesized at elevated temperature, a new polytype, 3R-LixTiS₂, was found for some values of x. The regions of stability of the 3R polytype and the well known 1T polytype are presented. Lithium can be intercalated or de-intercalated from both polytypes at room temperature. Ambient temperature Li/3R-LixTiS₂ cells have higher average voltages than Li/1T-Li TiS₂, cells.
The lithium spinel oxides are another class of
materials receiving attention as cathode materials in
lithium secondary batteries. LiTi₂0₄ is metallic, has the
cubic spinel structure and reacts with one further lithium
atom to form Li₂Ti₂0₄. The related spinel Li₄/₃Ti₅/₃⁰₄͵
which is electrically insulating, also reacts reversibly
with one lithium atom. Both Li₂Ti₂0₄ and Li₄/₃Ti₅/₃⁰₄͵
cells cycle reversibly, but have subtle differences in their
voltage profiles. The difference in cell behaviour was
interpreted based on the band structure of Li₁˖xTi₂₋x⁰₄.
The mixed spinels LiMnyTi₂₋y⁰₄ (0 ≤ y ≤ 2) were also investigated. These compounds were synthesized at high temperature but their performance as cathodes in lithium batteries was not encouraging.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-08-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0097687
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.