UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Characterization of neuropharmacological systems in the mammalian central nervous system Hicks, T. Philip

Abstract

The effects of a range of neuronal excitants were examined on the firing of central neurones of the cerebral cortex, ventrobasal thalamus, dentate gyrus and dorsal and ventral horns of the spinal cords of urethane anaesthetized rats. These responses were pharmacologically characterized on the basis of their susceptibilities to a number of antagonists and from these results, inferences were made concerning probable receptor mechanisms employed by the agonists. Throughout these experiments the technique of iontophoresis was found to be an ideal one for evaluating the effects of agonists and antagonists on single neurones. Neurones in the cortex, thalamus and Renshaw cells of the spinal cord were readily excited by acetylcholine. These responses were elicited also by both nicotinic and muscarinic cholinomimetics. Excitations produced by acetylcholine and acetyl-β-methylcholine were antagonized by atropine and those of acetylcholine and nicotinic agonists were blocked by nicotinic antagonists. The results may be interpreted as revealing a difference between excitatory cholinergic receptors in the rat and in the cat; the nature of these receptors is discussed. to The excitatory responses of ventrobasal thalamic neurones iontophoretically applied amino acids related to glutamate and aspartate could be blocked both by glutamate diethylester and α-aminoadipate. These two antagonists were found to possess different mechanisms of action however, as the ranking orders of susceptibility of the agonists differed for each antagonist. An analysis of these orders led to the proposal that more than one and possibly as many as three different receptors for the excitatory amino acids exist on central neurones. A number of additional compounds were tested for an evaluation of their antagonistic properties against the amino acid induced responses, and these results are discussed in light of possible steric requirements of the receptors. Granule cells of the dentate gyrus were excited by the amino acids and by their synaptic responses to stimulation of perforant path and commissural inputs. A differential effectiveness of glutamate diethylester and α-aminoadipate was suggestive that two distinct excitatory amino acid receptors, both of which appear to be of synaptic significance, coexist on the same neurones. The effects of octopamine were compared with those of catecholamines on neurones of the cortex and dorsal horn of the spinal cord. Both excitation and depression of neuronal firing was observed with octopamine and these responses appeared not to be correlated with those effected by the catecholamines. A further separation of the actions of octopamine and the catecholamines was evident when the amine induced responses were compared in the presence of the antagonists, propranolol and α-flupenthixol. These blocking compounds were effective in attenuating the effects of the catecholamines, but had no effect upon the octopamine induced changes in firing rate. The results suggest that receptors sensitive to octopamine and which appear to be pharmacologically distinct from those previously categorized as catecholamine receptors, may exist on central neurones of the rat. On the basis of the present findings, it was evident that when the technique of iontophoresis is combined with standard neurophysiological methods of identifying central neurones by their responses to synaptic stimulation, valuable information can be obtained concerning the nature of the synaptic transmitters employed by these cells.

Item Media

Item Citations and Data

License

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Usage Statistics