- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Embrittlement of brass by ammoniacal solutions and...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Embrittlement of brass by ammoniacal solutions and mercury Birley, Stuart Samuel
Abstract
The influence of a liquid metal and a stress corrosion environment on the mechanical properties of α and β brasses was investigated under continuous tensile loading conditions: strain rate and grain size (α brass only) were systematic variables. Increasing strain rate or decreasing grain size was found to increase the ductility and fracture stress of the polycrystalline material in either environment. Single crystal studies revealed (1) that grain boundaries are not essential for embrittlement by either media and (2) that the surface films induced by the environment are mechanically very weak. The fractured surfaces of a brass were examined (1) for topographical features using both direct and indirect replica electron microscopy and (2) for evidence of thin films using a low angle electron diffraction technique. Crack path in both environments was invariably intergranular, and details of fractured surfaces were similar. Thin films were detected on the fractured surfaces, and the compositions determined. In general, both environments conferred the same general embrittling effects. It is possible to account for the current observations by a common cracking mechanism: the development of such a model based on the slip step displacement of a passive surface film is discussed.
Item Metadata
Title |
Embrittlement of brass by ammoniacal solutions and mercury
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1970
|
Description |
The influence of a liquid metal and a stress corrosion environment on the mechanical properties of α and β brasses was investigated under continuous tensile loading conditions: strain rate and grain size (α brass only) were systematic variables. Increasing strain rate or decreasing grain size was found to increase the ductility and fracture stress of the polycrystalline material in either environment. Single crystal studies revealed (1) that grain boundaries are not essential for embrittlement by either media and (2) that the surface films induced by the environment are mechanically very weak.
The fractured surfaces of a brass were examined (1) for topographical features using both direct and indirect replica electron microscopy and (2) for evidence of thin films using a low angle electron diffraction technique. Crack path in both environments was invariably intergranular, and details of fractured surfaces were similar. Thin films were detected on the fractured surfaces, and the compositions determined.
In general, both environments conferred the same general embrittling effects. It is possible to account for the current observations by a common cracking mechanism: the development of such a model based on the slip step displacement of a passive surface film is discussed.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-05-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0093336
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.