- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Comparative studies of X inactivation within Eutheria
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Comparative studies of X inactivation within Eutheria Yen, Ziny
Abstract
X chromosome inactivation has not been well studied in mammals other than humans and mice. In both species, the inactive X expresses the XIST/Xist (X-inactivation specific transcript) non-coding R N A that is crucial for dosage compensation in females. Although both species belong to the same mammalian subclass, Eutheria, they show significant differences in imprinting patterns, negative regulation of XIST/Xist, and extent of silencing on the inactive X chromosome. Furthermore, the mechanism by which the Xist transcript coats and silences the X in cis is unknown. This study focuses on X-inactivation in other eutherians, first to unravel domains within XIST/Xist of biological significance, and second to investigate whether incomplete silencing in humans is unique within the mammalian subclass. Comparative analysis to predict conserved secondary structures between seven eutherian orthologs revealed common stems in the sequence before the Xist A repeat, the A repeat, F repeat, and exon 4. Several complex secondary structures were also similar between rodents but were not conserved in other species. These included the D repeat; structures between the B and D, as well as A and F repeats; and the unique rodent exon 5. The significance of these conserved domains in the context of potential biological functions, and how the structural differences might account for some species-specific differences, is discussed in this thesis. To investigate the species variability in the extent of silencing, methylation analysis was performed on Zfic, JaridlC, Crsp2, Utx, Ubel, Ar, and Fmrl in the cow and coast mole, in addition to human and mouse. Results from this study suggest that mouse is distinct in its more complete inactivation at several loci - Zjx, Crsp2 - on the evolutionary newer part of the X , and Ubel on an evolutionary older part of the chromosome. In addition to evolutionary age, factors such as the position o f the centromere, distance from the X inactivation centre (XIC), and presence of Y homologs failed to consistently explain or predict whether the genes on the X chromosome would escape or be subject to inactivation. Further epigenetic analysis is necessary to understand the distinct mechanisms leading to escape versus inactivation amongst different mammals.
Item Metadata
Title |
Comparative studies of X inactivation within Eutheria
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2005
|
Description |
X chromosome inactivation has not been well studied in mammals other than humans
and mice. In both species, the inactive X expresses the XIST/Xist (X-inactivation specific
transcript) non-coding R N A that is crucial for dosage compensation in females. Although
both species belong to the same mammalian subclass, Eutheria, they show significant
differences in imprinting patterns, negative regulation of XIST/Xist, and extent of silencing
on the inactive X chromosome. Furthermore, the mechanism by which the Xist transcript
coats and silences the X in cis is unknown. This study focuses on X-inactivation in other
eutherians, first to unravel domains within XIST/Xist of biological significance, and second to
investigate whether incomplete silencing in humans is unique within the mammalian
subclass.
Comparative analysis to predict conserved secondary structures between seven
eutherian orthologs revealed common stems in the sequence before the Xist A repeat, the A
repeat, F repeat, and exon 4. Several complex secondary structures were also similar
between rodents but were not conserved in other species. These included the D repeat;
structures between the B and D, as well as A and F repeats; and the unique rodent exon 5.
The significance of these conserved domains in the context of potential biological functions,
and how the structural differences might account for some species-specific differences, is
discussed in this thesis.
To investigate the species variability in the extent of silencing, methylation analysis
was performed on Zfic, JaridlC, Crsp2, Utx, Ubel, Ar, and Fmrl in the cow and coast mole,
in addition to human and mouse. Results from this study suggest that mouse is distinct in its
more complete inactivation at several loci - Zjx, Crsp2 - on the evolutionary newer part of
the X , and Ubel on an evolutionary older part of the chromosome. In addition to
evolutionary age, factors such as the position o f the centromere, distance from the X
inactivation centre (XIC), and presence of Y homologs failed to consistently explain or
predict whether the genes on the X chromosome would escape or be subject to inactivation.
Further epigenetic analysis is necessary to understand the distinct mechanisms leading to
escape versus inactivation amongst different mammals.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2009-12-18
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0092268
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2005-11
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.