- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Effects of a ten-year climate warming experiment on...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Effects of a ten-year climate warming experiment on nitrogen cycling in high arctic tundra Rolph, Sandra Gale
Abstract
The effects of a 10-year climate warming experiment on nitrogen (N) cycling in high arctic tundra ecosystems were examined along a soil moisture gradient at Alexandra Fiord, Ellesmere Island, Canada (78°53'N, 75°55'W). Open top chambers were established in 1992 to passively warm five tundra plant communities within the range predicted for a doubling of atmospheric CO₂. Inorganic N availability, measured using ion exchange membranes, was consistently higher in the warmed plots throughout the growing season in three plant communities. Soluble organic N availability increased significantly with warming in a wet sedge meadow. Net N mineralization in buried bag incubations was not significantly affected by the warming treatments; however, net N immobilization was four-times higher in the warmed plots compared to the controls in the sedge meadow. Reciprocal transplantation of buried bags between temperature treatments indicated that the increase in net N immobilization was a result of changes in soil properties during the nine-year experiment, in conjunction with continued temperature enhancement. Significant reductions in litter quality, measured as C:N ratios, were observed for woody and herbaceous growth forms in the warmed treatments at the end of the growing season. Reproductive parts had higher C:N than vegetative parts, and C:N increased with warming. Therefore, previously observed increases in reproductive effort with warming have likely reduced litter quality. Despite this potential for negative litter quality feedbacks to N availability with warming, soil organic matter was not significantly affected by the ninth year of the experiment. We hypothesize that the short-term changes in soil N transformations and increased N availability have contributed to the increases in plant growth observed in the warmed plots, and that shifts in the relative availabilities of NO₃, NH₄, and SON may have contributed to changes in the species composition of the tundra plant communities. However, this negative feedback to greenhouse warming may be strongly constrained by longer-term litter quality feedbacks to soil organic matter quality, and N availability in high arctic tundra ecosystems.
Item Metadata
Title |
Effects of a ten-year climate warming experiment on nitrogen cycling in high arctic tundra
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2003
|
Description |
The effects of a 10-year climate warming experiment on nitrogen (N) cycling in high arctic tundra ecosystems were examined along a soil moisture gradient at Alexandra Fiord, Ellesmere Island, Canada (78°53'N, 75°55'W). Open top chambers were established in 1992 to passively warm five tundra plant communities within the range predicted for a doubling of atmospheric CO₂. Inorganic N availability, measured using ion exchange membranes, was consistently higher in the warmed plots throughout the growing season in three plant communities. Soluble organic N availability increased significantly with warming in a wet sedge meadow. Net N mineralization in buried bag incubations was not significantly affected by the warming treatments; however, net N immobilization was four-times higher in the warmed plots compared to the controls in the sedge meadow. Reciprocal transplantation of buried bags between temperature treatments indicated that the increase in net N immobilization was a result of changes in soil properties during the nine-year experiment, in conjunction with continued temperature enhancement. Significant reductions in litter quality, measured as C:N ratios, were observed for woody and herbaceous growth forms in the warmed treatments at the end of the growing season. Reproductive parts had higher C:N than vegetative parts, and C:N increased with warming. Therefore, previously observed increases in reproductive effort with warming have likely reduced litter quality. Despite this potential for negative litter quality feedbacks to N availability with warming, soil organic matter was not significantly affected by the ninth year of the experiment. We hypothesize that the short-term changes in soil N transformations and increased N availability have contributed to the increases in plant growth observed in the warmed plots, and that shifts in the relative availabilities of NO₃, NH₄, and SON may have contributed to changes in the species composition of the tundra plant communities. However, this negative feedback to greenhouse warming may be strongly constrained by longer-term litter quality feedbacks to soil organic matter quality, and N availability in high arctic tundra ecosystems.
|
Extent |
3891086 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-10-19
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0090983
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2003-05
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.