UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Numerical simulation of fiber separation in hydrocyclones Wang, Zheqiong

Abstract

Hydrocyclones are used in the pulp and paper industry to eliminate undesirable particles as well as for fiber fractionation. This current thesis is focused on modeling the performance of hydrocyclone, which can be used to predict and optimize the hydrocyclone design. The computational model developed in this study consists of two models. The flow model is a three-dimensional k-e turbulence model. The Navier-Stokes equations are solved in a curvilinear coordinate system. The Launder correction is used to model the turbulence in the highly swirling flow. Then the flow model is coupled with a Lagrangian tracking of solid particles representing the fibers. The fiber model allows for the motion in three dimensions. Fibers are constituted of ellipsoids and allow for the representation of flexible behavior. Interaction with the wall is implemented. Separation characteristics are investigated for different fiber properties and hydrocyclone design parameters. The predictions of the proposed model are compared with elaborate published experimental data sets. Good agreement is obtained between the model predictions and the experimental data.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.