- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Signals regulating neuronal cell body responses to...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Signals regulating neuronal cell body responses to axotomy Fernandes, Karl John Lionel
Abstract
Spinal cord injury in higher vertebrates causes paralysis because injured neurons in
the adult central nervous system (CNS) often atrophy or die, and fail to regenerate
their severed processes ("axons"). In contrast, injured peripheral nervous system (PNS)
neurons usually survive and regenerate their axons. One reason for successful PNS
responses to axon injury ("axotomy") is that they undergo numerous changes in gene
expression that enhance their intrinsic growth state. These changes include the upregulation
of proteins required for axon growth, and down-regulation of non-essential
proteins, such as those used mainly for neurotransmission. Similar changes in gene
expression are generally only weak and transient in axotomized CNS neurons, which
most likely contributes to their poor responses to injury. This thesis investigates the
potential regulation of injury-induced changes in gene expression by neurotrophic
factors (NTFs), small proteins important for development and maintenance of the
nervous system. Three principal findings are presented here.
Firstly, in axotomized PNS motoneurons, the down-regulation of non-essential
proteins associated with neuronal maturation, such as neurotransmitter enzymes and
neurofilaments appears to be due to the interrupted supply of target-derived neurotrophic
factors.
Secondly, in axotomized PNS. motoneurons, the robust up-regulation of
regeneration-associated genes and cell body hypertrophy is enhanced by non-targetderived
neurotrophic factors, most likely those released by Schwann cells and immune
cells at the actual site of injury. In fact, a second axon injury (to stimulate release of
these endogenous neurotrophic factors) was sufficient to actually reverse the severe cell body atrophy and up-regulate the regeneration-associated gene expression of
chronically axotomized motoneurons.
Thirdly, when exogenous neurotrophic factors were used to supplement a CNS
spinal cord lesion site, which does not contain Schwann cells and has only limited
invasion of immune cells, the regenerative cell body responses of axotomized CNS
rubrospinal neurons were greatly enhanced.
These findings provide insights into the signals regulating neuronal gene
expression after injury, and identify neurotrophic factors at the site of axotomy as an
important determinant of a neuron's regenerative response to injury.
Item Metadata
| Title |
Signals regulating neuronal cell body responses to axotomy
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
2000
|
| Description |
Spinal cord injury in higher vertebrates causes paralysis because injured neurons in
the adult central nervous system (CNS) often atrophy or die, and fail to regenerate
their severed processes ("axons"). In contrast, injured peripheral nervous system (PNS)
neurons usually survive and regenerate their axons. One reason for successful PNS
responses to axon injury ("axotomy") is that they undergo numerous changes in gene
expression that enhance their intrinsic growth state. These changes include the upregulation
of proteins required for axon growth, and down-regulation of non-essential
proteins, such as those used mainly for neurotransmission. Similar changes in gene
expression are generally only weak and transient in axotomized CNS neurons, which
most likely contributes to their poor responses to injury. This thesis investigates the
potential regulation of injury-induced changes in gene expression by neurotrophic
factors (NTFs), small proteins important for development and maintenance of the
nervous system. Three principal findings are presented here.
Firstly, in axotomized PNS motoneurons, the down-regulation of non-essential
proteins associated with neuronal maturation, such as neurotransmitter enzymes and
neurofilaments appears to be due to the interrupted supply of target-derived neurotrophic
factors.
Secondly, in axotomized PNS. motoneurons, the robust up-regulation of
regeneration-associated genes and cell body hypertrophy is enhanced by non-targetderived
neurotrophic factors, most likely those released by Schwann cells and immune
cells at the actual site of injury. In fact, a second axon injury (to stimulate release of
these endogenous neurotrophic factors) was sufficient to actually reverse the severe cell body atrophy and up-regulate the regeneration-associated gene expression of
chronically axotomized motoneurons.
Thirdly, when exogenous neurotrophic factors were used to supplement a CNS
spinal cord lesion site, which does not contain Schwann cells and has only limited
invasion of immune cells, the regenerative cell body responses of axotomized CNS
rubrospinal neurons were greatly enhanced.
These findings provide insights into the signals regulating neuronal gene
expression after injury, and identify neurotrophic factors at the site of axotomy as an
important determinant of a neuron's regenerative response to injury.
|
| Extent |
18965064 bytes
|
| Genre | |
| Type | |
| File Format |
application/pdf
|
| Language |
eng
|
| Date Available |
2009-08-19
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
| DOI |
10.14288/1.0090367
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Graduation Date |
2000-05
|
| Campus | |
| Scholarly Level |
Graduate
|
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.