UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Statistical analysis of discrete time series with application to the analysis of workers' compensation claims data Freeland, R. Keith


This thesis examines the statistical properties of the Poisson AR(1) model of Al-Osh and Alzaid (1987) and McKenzie (1988). The analysis includes forecasting, estimation, testing for independence and specification and the addition of regressors to the model. The Poisson AR(1) model is an infinite server queue, and as such is well suited for modeling short-term disability claimants who are waiting to recover from an injury or illness. One of the goals of the thesis is to develop statistical methods for analyzing series of monthly counts of claimants collecting short-term disability benefits from the Workers' Compensation Board (WCB) of British Columbia. We consider four types of forecasts, which are the k-step ahead conditional mean, median, mode and distribution. For low count series the k-step ahead conditional distribution is practical and much more informative than the other forecasts. We consider three estimation methods: conditional least squares (CLS), generalized least squares (GLS) and maximum likelihood (ML). In the case of CLS estimation we find an analytic expression for the information and in the GLS case we find an approximation for the information. We find neat expressions for the score function and the observed Fisher information matrix. The score expressions leads to new definitions of residuals. Special care is taken to test for independence since the test is on the boundary of the parameter space. The score test is asymptotically equivalent to testing whether the CLS estimate of the correlation coefficient is zero. Further we define a Wald and likelihood ratio test. Then we use the general specification test of McCabe and Leybourne (1996) to test whether the model is sufficient to explain the variation found in the data. Next we add regressors to the model and update our earlier forecasting, estimation and testing results. We also show the model is identifiable. We conclude with a detailed application to monthly WCB claims counts. The preliminary analysis includes plots of the series, autocorrelation function and partial autocorrelation function. Model selection is based on the preliminary analysis, t-tests for the parameters, the general specification test and residuals. We also include forecasts for the first six months of 1995.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.