UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fluxes, compartmentation and metabolism of nitrate and ammonium in spruce roots Kronzucker, Herbert J.

Abstract

Techniques of compartmental analysis and kinetic flux analysis with the radiotracer ¹³N were employed to examine the uptake, compartmentation, and metabolism of NO₃⁻ and NH₄⁺ in roots of white spruce (Picea glauca (Moench) Voss.). Efflux analysis, conducted over 22-min periods, resolved the exchange of inorganic N with three subcellular compartments. These were (I) a root-surface film, (II) an adsorptive component of the cell wall, and (III) the root-cell cytoplasm. The identities of the compartments were tested using various approaches. Half-lives of exchange were (for NH₄⁺) ≈ 2 s, 20 s, and 7 min, respectively, and (for NO₃⁻) 2 s, 30 s, and 14 min, respectively. Under the steady-state conditions assessed by efflux analysis, four to five-fold larger rates of uptake were observed for NH₄⁺ than for NO₃⁻ Steady-state NH₄⁺ influx ranged from 0.3 to 6.5 μmol g⁻¹ (FW) h⁻¹ , while it was 0.08 to 1.2 μmol g⁻¹ h⁻¹ for NO₃⁻, at external concentrations from 0.01 to 1.5 mM of the two N sources. Efflux increased with increasing external concentrations of the N sources and ranged from 10% to 30% of influx for NH₄⁺ and from 1% to 20% for NO₃⁻. Cytoplasmic concentrations were considerably higher for NH₄⁺ than for NO₃⁻; [NH₄⁺][sub cyt] was 2 to 30 mM, whereas [NO₃⁻][sub cyt] was 0.2 to 4 mM under the above conditions. A time-dependent compartmental-analysis study revealed that NO₃⁻ uptake was inducible by external NO₃⁻ and that three days were required for maximal uptake to be achieved at 100 μM [NO₃⁻]₀. The dynamics of NO₃⁻-flux partitioning to different compartments during induction were characterized. Analysis of nitrate reductase activity under identical conditions confirmed the slow inductive time-scale. Kinetic analysis of influx under perturbation conditions revealed distinct uptake systems for both N species. At [NO₃⁻]₀ ≤ 1 mM, NO₃⁻ influx was mediated by a constitutive and saturable high-affinity transport system (CHATS) and by a bisaturable inducible high-affinity transport system (IHATS). Beyond 1 mM, a linear low-affinity system (LATS) was evident. NH₄⁺ influx was not inducible by external NH₄⁺. It was mediated by a constitutive and saturable high-affinity transporter (HATS) at [NH₄⁺]₀ ≤ 1 mM, while a linear low-affinity transporter (LATS) operated beyond 1 mM. K[sub m] values for the initial phase of high-affinity transport were similar for both N species (≈ 20 μM), but V[sub max] was up to 20 times larger for NH₄⁺ than for NO₃⁻ when measured in perturbation. Overall, the study establishes a pronounced physiological limitation in spruce roots in transporting and utilizing NO₃⁻ as compared to NH₄⁺.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.