- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Instabilities of a Z-pinch discharge
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Instabilities of a Z-pinch discharge Hodgson, Rodney Trevor
Abstract
The cylindrical column of plasma produced in the first stage of a z-pinch discharge is theoretically unstable. For one particular type of instability, the amplitude of a surface perturbation increases at a rate dependent on the acceleration of the surface (Rayleigh-Taylor instabilities). An experimental study of these instabilities has been carried out by photographing the discharge column with a high-speed framing-camera. Simple rotationally symmetric instabilities have been excited in the normally stable initial stage of an argon z-pinch discharge by means of a set of equally spaced glass rings. The framing camera photographs show that the instabilities develope approximately in accordance with the Rayleigh-Taylor theory. No axial drift of the instabilities is observed, but the new technique of studying instabilities reveals that the acceleration of the discharge boundary changes appreciably three or four times during the initial stage of the discharge.
Item Metadata
Title |
Instabilities of a Z-pinch discharge
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1964
|
Description |
The cylindrical column of plasma produced in the first stage of a z-pinch discharge is theoretically unstable. For one particular type of instability, the amplitude of a surface perturbation increases at a rate dependent on the acceleration of the surface (Rayleigh-Taylor instabilities).
An experimental study of these instabilities has been carried out by photographing the discharge column with a high-speed framing-camera.
Simple rotationally symmetric instabilities have been excited in the normally stable initial stage of an argon z-pinch discharge by means of a set of equally spaced glass rings. The framing camera photographs show that the instabilities develope approximately in accordance with the Rayleigh-Taylor theory. No axial drift of the instabilities is observed, but the new technique of studying instabilities reveals that the acceleration of the discharge boundary changes appreciably three or four times during the initial stage of the discharge.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-10-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0085824
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.