- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Quantitative linear optical scattering spectroscopy...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Quantitative linear optical scattering spectroscopy of two-dimensionally textured planar waveguides Mandeville, William Jody
Abstract
Linear white light spectroscopy in conjunction with rigorous computer modeling reveals the fundamental nature of the electromagnetic excitations associated with the simple lattice and defect superlattice texturing of 2D planar waveguides. By achieving unprecedented agreement between experimentally measured and rigorously simulated band structures of leaky modes associated with the second, and up to the seventh, zone-folded Brillouin zones of square and triangular lattice structures, a thorough characterization of the polarization and dispersive properties of these electromagnetic modes has been achieved. An evaluation of the usefulness of a newly developed diffraction measurement technique for probing band structure is presented in conjunction with data and simulations for waveguides with defect superlattices. Textured planar waveguides, as a powerful medium for engineering devices which control the propagation of light, are explored via the thorough characterization of a novel polymer waveguide, and a GaAs waveguide that was engineered to possess a flat band for use in non-linear optics applications; in addition an original design is discussed for an angle and polarization insensitive notch filter based on a localized defect mode.
Item Metadata
Title |
Quantitative linear optical scattering spectroscopy of two-dimensionally textured planar waveguides
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2001
|
Description |
Linear white light spectroscopy in conjunction with rigorous computer modeling reveals the fundamental nature of the electromagnetic excitations associated with the simple lattice and defect superlattice texturing of 2D planar waveguides. By achieving unprecedented agreement between experimentally measured and rigorously simulated band structures of leaky modes associated with the second, and up to the seventh, zone-folded Brillouin zones of square and triangular lattice structures, a thorough characterization of the polarization and dispersive properties of these electromagnetic modes has been achieved. An evaluation of the usefulness of a newly developed diffraction measurement technique for probing band structure is presented in conjunction with data and simulations for waveguides with defect superlattices. Textured planar waveguides, as a powerful medium for engineering devices which control the propagation of light, are explored via the thorough characterization of a novel polymer waveguide, and a GaAs waveguide that was engineered to possess a flat band for use in non-linear optics applications; in addition an original design is discussed for an angle and polarization insensitive notch filter based on a localized defect mode.
|
Extent |
6336474 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-10-08
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0085706
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2001-05
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.