- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Rotation curve mass modeling of disk galaxies
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Rotation curve mass modeling of disk galaxies Dutton, Aaron Ambrose
Abstract
The standard Cold Dark Matter (CDM) model for cosmological structure formation has been remarkably successful in explaining the observed large scale structure of the universe. At the scale of individual galaxies, however, CDM faces serious challenges; one of these is the apparent discrepancy between the steep density profiles found in cosmological N-body simulations and the flatter density profiles inferred from optical rotation curves of low surface brightness galaxies. We have developed a new comprehensive rotation curve mass modeling decomposition code and tested it on 6 mass modeling standards, previously studied by Blais-Ouellette (2000). Our decompositions allow for all cosmologically-motivated types of halos, thin or thick disks, variable disk M/L ratio, adiabatic contraction of the dark halo, and non-spherical halos. We investigate the allowed range of inner density profile shapes as a function of disk M/L ratio. This program is being developed for an upcoming application to a new sample of 24 high and low surface brightness galaxies with wide-field optical/IR imaging and high-resolution long-slit Ho; rotation curves.
Item Metadata
Title |
Rotation curve mass modeling of disk galaxies
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2003
|
Description |
The standard Cold Dark Matter (CDM) model for cosmological structure formation has been remarkably successful in explaining the observed large scale structure of the universe. At the scale of individual galaxies, however, CDM faces serious challenges; one of these is the apparent discrepancy between the steep density profiles found in cosmological N-body simulations and the flatter density profiles inferred from optical rotation curves of low surface brightness galaxies. We have developed a new comprehensive rotation curve mass modeling decomposition code and tested it on 6 mass modeling standards, previously studied by Blais-Ouellette (2000). Our decompositions allow for all cosmologically-motivated types of halos, thin or thick disks, variable disk M/L ratio, adiabatic contraction of the dark halo, and non-spherical halos. We investigate the allowed range of inner density profile shapes as a function of disk M/L ratio. This program is being developed for an upcoming application to a new sample of 24 high and low surface brightness galaxies with wide-field optical/IR imaging and high-resolution long-slit Ho; rotation curves.
|
Extent |
5061937 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-10-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0085688
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2003-05
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.