UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Stellar populations in spiral galaxies : broadband versus spectroscopic viewpoints MacArthur, Lauren Anne


This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 A break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful indices are only weakly affected by dust extinction (especially relative to typical measurement uncertainties), and can thus be safely used in spectroscopic studies of dusty systems. Motivated by our previous results, we embarked on a long-term project to determine age and metallicity gradients from absorption features in spiral galaxy spectra from their centers and extending well into their disks for the first time. A pilot sample of 8 barred and unbarred nearby spiral galaxies was observed with Gemini/GMOS and line indices with S/N > 40 per Å were extracted out to ~ 1 -1.5 disk scale lengths. Emission contamination and a suite of instrumental effects were fully taken into account. Reliable line-indices compared with the latest SPS models reveal that; i) late-type bulges and inner disks are generally young (light-weighted SSP ages ≤ 1 to 6 Gyr) with no age gradients, and ii) late-type spirals have metallicities close to solar at their center decreasing rapidly outward (with gradients of ~ - 0.3 to - 0.7 dex per r[sub d]). Disk contamination into the bulge is an issue but the inferred young ages exclude the interpretation of early rapid collapse or merger origin of late-type bulges. While secular evolution processes are likely the predominant mechanism for the bulge build-up, the strong observed metallicity gradients are not currently supported by such models. Our analysis has demonstrated the feasibility of age and metallicity determinations from longslit spectroscopy of gas rich, star-forming, systems. However, a systematic comparison with galaxy properties requires a larger statistical sample. New GMOS longslit spectra acquired recently will augment our data base and contribute to the build-up of this instrumental data base for the study of bulge and disk formation models.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.