- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Gamma ray anisotropies in antiferromagnetic crystals...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Gamma ray anisotropies in antiferromagnetic crystals of MnSiF₆.6H₂0 and CoC1₂.6H₂0 Griffiths, David J.
Abstract
By the technique of adiabatic demagnetization, paramagnetic salts may be cooled to temperatures less than .1°K. By good thermal contact between crystals and paramagnetic salts, the antiferromagnetics MnSiF₆.6H₂0 and CoC1₂.6H₂0 were cooled to temperatures at which the hyperfine interaction energy of an introduced Mn⁵⁴ impurity was comparable to kT. This resulted in a preferential population distribution of the available energy states. The alignment of nuclear spin, induced by the crystalline field present at the active Mn⁵⁴ impurity, was measured by the anisotropic distribution of the ƴ-rays given off by the radioactive Mn⁵⁴. This data led to a determination of the crystalline field acting on the impurity ion in MnSiF₆.6H₂0 and to verification of theoretical calculations representing the anisotropy of ƴ-emission as a function of absolute temperature. Also by means of such data, a determination was made of the axes of alignment in the antiferromagnetic, CoC1₂.6H₂0 .
Item Metadata
Title |
Gamma ray anisotropies in antiferromagnetic crystals of MnSiF₆.6H₂0 and CoC1₂.6H₂0
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1960
|
Description |
By the technique of adiabatic demagnetization, paramagnetic
salts may be cooled to temperatures less than .1°K. By good thermal contact between crystals and paramagnetic salts, the antiferromagnetics MnSiF₆.6H₂0 and CoC1₂.6H₂0 were cooled to temperatures at which the
hyperfine interaction energy of an introduced Mn⁵⁴ impurity was comparable to kT. This resulted in a preferential
population distribution of the available energy states. The alignment of nuclear spin, induced by the crystalline field present at the active Mn⁵⁴ impurity, was measured by the anisotropic distribution of the ƴ-rays given off by the radioactive Mn⁵⁴. This data led to a determination of the crystalline field acting on the impurity ion in MnSiF₆.6H₂0 and to verification
of theoretical calculations representing the anisotropy of ƴ-emission as a function of absolute temperature. Also by means of such data, a determination was made of the axes of alignment in the antiferromagnetic, CoC1₂.6H₂0 .
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-01-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0085397
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.