- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Dynamics of a Z-pinch discharge in Argon.
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Dynamics of a Z-pinch discharge in Argon. Daughney, Cecil Charles
Abstract
A discussion of probe measurement of the magnetic field in a plasma is presented with particular reference to the perturbation of the magnetic field caused by the probe. A correction procedure is developed to compensate for this perturbation. Using magnetic probes, radial variation of the current density distributions are obtained for an argon plasma in a z-pinch discharge. Initial argon pressures of 100, 250, and 500 μHg are investigated. The current density distributions are determined for 1 μsec intervals between the initiation of the discharge and the occurrence of the first pinch. These current density distributions are compared with photographic observations. The experimental results are discussed in terms of the snowplow model and the shock wave model. Mathematically, the non-linear snowplow equation is solved using an approximation technique which results in analytic solutions. The shock wave equation is solved by a graphical technique. An extension of the shock wave model is proposed for a better understanding of the experimental results.
Item Metadata
Title |
Dynamics of a Z-pinch discharge in Argon.
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1966
|
Description |
A discussion of probe measurement of the magnetic field in a plasma is presented with particular reference to the perturbation of the magnetic field caused by the probe. A correction procedure is developed to compensate for this perturbation.
Using magnetic probes, radial variation of the current density distributions are obtained for an argon plasma in a z-pinch discharge. Initial argon pressures of 100, 250, and 500 μHg are investigated. The current density distributions are determined for 1 μsec intervals between the initiation of the discharge and the occurrence of the first pinch. These current density distributions are compared with photographic observations.
The experimental results are discussed in terms of the snowplow model and the shock wave model. Mathematically, the non-linear snowplow equation is solved using an approximation technique which results in analytic solutions. The shock wave equation is solved by a graphical technique. An extension of the shock wave model is proposed for a better understanding of the experimental results.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-08-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0085336
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.