UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Radial temperature derived from probe conductance measurements in a recovering spark channel Clements, Reginald Montgomery


The conductance of a small electric probe has been determined for radial distances (2 - 15 cm) from a recovering spark gap as a function of time after discharge initiation. The times investigated were from 0.2 to 15 ms and the gas pressure was varied from 22 mmHg down to 0.1 mmHg. The voltage applied to the probes was a sawtooth pulse which rose to about 80 volts in 10 μs. It is shown theoretically that the probe conductance should be proportional to the three-halves power of the gas temperature. Prom a known value of the temperature, deduced from recovery measurements, and the known probe conductance the constant of proportionality was deduced. Hence it was possible to determine the temperature from the probe conductance. The probe conductance measurements show that at 200 mmHg pressure the spark channel is only 2 cm in radius and that there is no detectable ionization left 2 ms after the discharge. As the gas pressure decreases the spark channel increases in size and takes longer to deionize, until at 1 mmHg pressure the channel fills the whole spark chamber (spark channel radius is 15 cm) and requires almost 15 ms to deionize. At 1 mmHg gas pressure there is a radial temperature gradient, while at 0.1 mmHg pressure the gas everywhere in the channel recovers at the same rate. In this experiment it is theoretically predicted that volume recombination should be the dominant recovery method and this is experimentally verified.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.