UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Laser-driven shock waves in quartz Waterman, Alfred James


The formation and propagation of laser-driven shock waves has been observed by optical shadowgraphy in fused quartz, α-quartz and sodium chloride. Target materials were irradiated with a 0.53 µm , ~ 2.5 ns FWHM laser pulse at intensities ranging between 0.2 — 2 x 10¹³ W/cm², producing peak pressures varying from 0.3 — 3 Mbar at the shock front. Observations in both varieties of quartz reveal transient, high-speed shock propagation followed by deceleration towards a steady asymptotic shock speed. Similar high-speed transients were not seen in sodium chloride. The results in quartz were found to be in significant disagreement with both one-dimensional and two-dimensional hydrodynamic calculations based on equilibrium equations of state. The non-steady shock propagation is interpreted as being due to a relaxation process in the phase transformation of quartz into the high-pressure stishovite phase which occurs at the shock front. The effects of such a relaxation process on the shock dynamics and shock compression process are considered for the case of a direct relaxation from quartz into stishovite, as well as for an indirect relaxation process in which the -transformation of quartz into stishovite is preceded by shock-induced amorphization of the quartz. It is shown that either scenario would result in higher shock speeds and less compressible shock states than those obtained under equilibrium conditions.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.