- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Determination of the donor pair exchange energy in...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Determination of the donor pair exchange energy in phosphorus-doped silicon Cullis, Pieter Rutter
Abstract
The e.p.r. spectrum for relatively dilute samples of phosphorus-doped silicon (<5 x 10(16) donors/cm³) has been calculated in detail for an assumed random distribution of impurities. The system of donor electron spins is treated as a collection of nearest neighbor donor pairs. An expression is derived for the donor pair exchange energy using Kohn-Luttinger wavefunctions and a general exchange energy expression. The resultant relationship contains an adjustable parameter a*, the "effective Bohr radius", which is determined from a comparison of the calculated spectrum and the experimental results obtained for the ratio, C, of the "central pair" and "hyperfine" line intensities. The resulting expression J(R), where J represents the exchange energy and R the separation vector connecting the two pair donors, exhibits an oscillatory spatial dependence due to interference from portions of the wavefunction arising from different conduction band valleys.
Item Metadata
Title |
Determination of the donor pair exchange energy in phosphorus-doped silicon
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1970
|
Description |
The e.p.r. spectrum for relatively dilute samples of phosphorus-doped silicon (<5 x 10(16) donors/cm³) has been calculated in detail for an assumed random distribution of impurities. The system of donor electron spins is treated as a collection of nearest neighbor donor pairs. An expression is derived for the donor pair exchange energy using Kohn-Luttinger wavefunctions and a general exchange energy expression. The resultant relationship contains an adjustable parameter a*, the "effective Bohr radius", which is determined from a comparison of the calculated spectrum and the experimental results obtained for the ratio, C, of the "central pair" and "hyperfine" line intensities. The resulting expression J(R), where J represents the exchange energy and R the separation vector connecting the two pair donors, exhibits an oscillatory spatial dependence due to interference from portions of the wavefunction arising from different conduction band valleys.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-05-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0084815
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.