UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Fiber orientation in a headbox Zhang, Xun


The prediction of fiber orientation is a critical parameter for papermakers who wish to control the quality of their paper products. The wet end processes, especially the headbox and the drainage stage on the forming wire, play important roles in determining the fiber orientation characteristics. The current thesis is focused on the headbox flow effect on fiber orientation. It summarizes a mathematical method, which has been developed by other researchers, for predicting the orientation of rigid fibers in dilute suspensions. This method, composed of a turbulent flow simulation model and a fiber motion model, has been applied to predict fiber motion in a headbox. To validate the method, experiments have been conducted by measuring the orientation of dyed nylon fibers moving in a pilot plexiglass headbox. Comparison of experiments and the present numerical simulations of the fiber orientation shows that the simulation method proposed can predict the trend of the statistical orientation distribution of dilute suspensions in headboxes, although there exists obvious deviations between the simulations and experiments. The fibers are seen to be more strongly oriented by the predictions than is observed in the experiments. The anisotropy of the fiber orientation in the headbox flow is caused not only by the mean flow field characteristics, but also by the turbulence characteristics, and the explicit effects of the turbulence are not yet included in the predictions. The simulation method is applied to predict fiber orientations for different headbox geometry, fiber aspect ratio and flow rate. From the prediction method, using only the mean flow effects, a larger contraction ratio is found to produce more concentrated fiber orientation in the flow direction at the exit of the headbox. The channel length, the flow velocity and the fiber aspect ratio within the range of study have little influence on the fiber orientation properties.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Usage Statistics