UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Damage tolerance of bonded composite aircraft repairs for metallic structures Clark, Randal John


This thesis describes the development and validation of methods for damage tolerance substantiation of bonded composite repairs applied to cracked plates. This technology is used to repair metal aircraft structures, offering improvements in fatigue life, cost, manufacturability, and inspectability when compared to riveted repairs. The work focuses on the effects of plate thickness and bending on repair life, and covers fundamental aspects of fracture and fatigue of cracked plates and bonded joints. This project falls under the UBC Bonded Composite Repair Program, which has the goal of certification and widespread use of bonded repairs in civilian air transportation. This thesis analyses the plate thickness and transverse stress effects on fracture of repaired plates and the related problem of induced geometrically nonlinear bending in unbalanced (single-sided) repairs. The author begins by developing a classification scheme for assigning repair damage tolerance substantiation requirements based upon stress-based adhesive fracture/fatigue criteria and the residual strength of the original structure. The governing equations for bending of cracked plates are then reformulated and line-spring models are developed for linear and nonlinear coupled bending and extension of reinforced cracks. The line-spring models were used to correct the Wang and Rose energy method for the determination of the long-crack limit stress intensity, and to develop a new interpolation model for repaired cracks of arbitrary length. The analysis was validated using finite element models and data from mechanical tests performed on hybrid bonded joints and repair specimens that are representative of an in-service repair. This work will allow designers to evaluate the damage tolerance of the repaired plate, the adhesive, and the composite patch, which is an airworthiness requirement under FAR (Federal Aviation Regulations) 25.571. The thesis concludes by assessing the remaining barriers to certification of bonded repairs, discussing the results of the analysis, and making suggestions for future work. The developed techniques should also prove to be useful for the analysis of fibre-reinforced metal laminates and other layered structures. Some concepts are general and should be useful in the analysis of any plate with large in-plane stress gradients that lead to significant transverse stresses.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.