- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Asymptotic properties of solutions of equations in...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Asymptotic properties of solutions of equations in Banach spaces. Schulzer, Michael
Abstract
Certain properties of the solution u of the equation Pu = v in a Banach space will be investigated. It will be assumed that v is a prescribed element of the space, P is a transformation defined on a closed subset in the space and consisting of the sum of a linear transformation and a contraction mapping, and that P and v depend on a real variable λ. which assumes values over the half-open positive interval 0 < λ ≤ λₒ. Then a theorem will be proved, establishing the existence and uniqueness of the solution u(λ) of P(λ)u(λ) = v(λ) . Under the hypothesis that P and v possess asymptotic expansions as λ→0, it will be shown that asymptotic solutions exist, that they are asymptotically unique, and that they possess asymptotic expansions which may be determined by a recursive process from those of P and v. The results obtained will be applied to particular types of Banach spaces, such as finite-dimensional Euclidean spaces, spaces of Lebesgue-square-summable functions and of continuous functions over a closed interval.
Item Metadata
Title |
Asymptotic properties of solutions of equations in Banach spaces.
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1959
|
Description |
Certain properties of the solution u of the equation Pu = v in a Banach space will be investigated. It will be assumed that v is a prescribed element of the space, P is a transformation defined on a closed subset in the space and consisting of the sum of a linear transformation and a contraction mapping, and that P and v depend on a real variable λ. which assumes values over the half-open positive interval
0 < λ ≤ λₒ. Then a theorem will be proved, establishing the existence and uniqueness of the solution u(λ) of P(λ)u(λ) = v(λ) .
Under the hypothesis that P and v possess asymptotic expansions as λ→0, it will be shown that asymptotic solutions exist, that they are asymptotically unique, and that they possess asymptotic expansions which may be determined by a recursive process from those of P and v.
The results obtained will be applied to particular types of Banach spaces, such as finite-dimensional Euclidean spaces, spaces of Lebesgue-square-summable functions and of continuous functions over a closed interval.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-01-06
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0080638
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.