- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Inner equivalence of thick subalgebras
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Inner equivalence of thick subalgebras Kerr, Charles R.
Abstract
In this thesis we construct some examples of thick subalgebras ɛ of factors ɑ. ɛ is thick in ɑ if (ɛ' ∩ ɑ) is maximal abelian in ɑ. We are concerned with their inner equivalence: given the thick subalgebras ɛ and ℱ in ɑ, does there exist a unitary U є ɑ such that U є U* = ℱ ? Examples of thick subalgebras which are not maximal abelian have been given by Dixmier and Kadison. Later Bures constructed numerous examples which he distinguished by use of certain invariants. We use Bures's construction to get, in certain factors ɑ of types II₁,- II₀₀, III, uncountable families {ɛ[subscript i]: iєℱ} of thick subalgebras of ɑ such that ɛ[subscript i] is not inner equivalent to ɛ[subscript J] when i ≠ J (We are able to add one example to those constructed by Bures). In each family, the ɛ[subscript i]cannot be distinguished by means of Bures's invariants, and so we are forced to show their non-inner-equivalence by direct calculations.
Item Metadata
Title |
Inner equivalence of thick subalgebras
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1968
|
Description |
In this thesis we construct some examples of thick subalgebras ɛ of factors ɑ. ɛ is thick in ɑ if (ɛ' ∩ ɑ) is maximal abelian in ɑ. We are concerned with their inner equivalence: given the thick subalgebras ɛ and ℱ in ɑ, does there exist a unitary U є ɑ such that U є U* = ℱ ?
Examples of thick subalgebras which are not maximal abelian have been given by Dixmier and Kadison. Later Bures constructed numerous examples which he distinguished by use of certain invariants.
We use Bures's construction to get, in certain factors ɑ of types II₁,- II₀₀, III, uncountable families {ɛ[subscript i]: iєℱ}
of thick subalgebras of ɑ such that ɛ[subscript i] is not inner equivalent
to ɛ[subscript J] when i ≠ J (We are able to add one example to those constructed by Bures). In each family, the ɛ[subscript i]cannot
be distinguished by means of Bures's invariants, and so we are forced to show their non-inner-equivalence by direct calculations.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-06-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0080495
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.