 Library Home /
 Search Collections /
 Open Collections /
 Browse Collections /
 UBC Theses and Dissertations /
 Fixed point theorems for pointtoset mappings
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Fixed point theorems for pointtoset mappings Ko, HweiMei
Abstract
Let f be a pointtoset mapping from a topological X space X into the family 2(X) of nonempty closed subsets of X . K. Fan [13] proved that if X is a Hausdorff locally convex linear topological space and K is a nonempty compact convex subset of X , then an upper semicontinuous mapping (abbreviated by u.s.c.) f from K into k(K), the family of nonempty closed convex subsets of K, has a fixed point in K . Our main object in this work is to weaken "compactness" of K to "weak compactness" and prove a fixed point theorem for a mapping f on K into certain subfamily of 2(K). The definition of convex function has been extended to pointtoset mappings in Chapter I. Let I denote the identity mapping on a Banach space X. Assume that If is a convex mapping on a weakly compact closed convex subset K of X. Then any of the following conditions implies the existence of the fixed point of f on K: (1) f : K → 2(K) is u.s.c. and [formula omitted] d(x,f(x)) = 0. (2) f : K → 2(K) is u.s.c. and is asymptotically regular (see definition 1.3) at some point in K . (3) f : K → cc(K) is nonexpansive and the Banach space X has a strictly convex norm. Moreover, it has been shown that if f : K → cpt(K) (see definition 0.3) is nonexpansive and If is strictly convex (see definition 1.5) on K, then K has a fixed point on K . Finally, an effort has been made to investigate the properties of the set of fixed points of a pointtoset mappings. In Chapter II, we have confined ourselves to a reflexive Banach space X which has a weakly continuous duality map J (see definition 2.3) and X has a strictly convex norm. On such a special space we are able to prove that a nonexpansive mapping f : X → cc(X) such that f(x)ʗ K, for any x in a closed convex bounded subset K of X , has a fixed point. As an application of this result we prove a fixed point theorem for semicontractive mappings (see definition 2.7). F : X → cc(X) such that F(x)ʗK for any x ε K , where K and X are the same as above. . In the last Chapter, we have proved that if f is strictly nonexpansive on a.Banach space X into cpt(X) and if there is x(o) ε X such that [formula omitted] has a subsequence convergent to a set A ε cpt(X) under the Hausdorff metric D on cpt(X), then f has a fixed point in A . Furthermore we prove that a nonexpansive mapping f : K → cpt(K), where K is a weakly compact convex subset of a metrizable locally convex linear topological space X, has a fixed point in K, provided that a constant k > 0 exists such that the set E(x) = {y ε K ; d(x,y) ≥ kd(y,f(y))} is nonempty and convex and the mapping E : K → k(K), with E(x) defined above, is weakly locally closed (see definition 3.1). Finally the comparisons of the continuities of a pointtoset mapping have been made.
Item Metadata
Title 
Fixed point theorems for pointtoset mappings

Creator  
Publisher 
University of British Columbia

Date Issued 
1970

Description 
Let f be a pointtoset mapping from a topological X
space X into the family 2(X) of nonempty closed subsets of X . K. Fan [13] proved that if X is a Hausdorff locally convex linear topological space and K is a nonempty compact convex subset of X , then an upper semicontinuous mapping (abbreviated by u.s.c.) f from K into k(K), the family of nonempty closed convex subsets of K, has a fixed point in K . Our main object in this work is to weaken "compactness"
of K to "weak compactness" and prove a fixed point theorem for a mapping f on K into certain subfamily of 2(K).
The definition of convex function has been extended to pointtoset mappings in Chapter I. Let I denote the identity mapping on a Banach space X. Assume that If is a convex mapping on a weakly compact closed convex subset K of X. Then any of the following conditions implies the existence of the fixed point of f on K:
(1) f : K → 2(K) is u.s.c. and [formula omitted] d(x,f(x)) = 0.
(2) f : K → 2(K) is u.s.c. and is asymptotically regular (see definition 1.3) at some point in K .
(3) f : K → cc(K) is nonexpansive and the Banach space X has a strictly convex norm.
Moreover, it has been shown that if f : K → cpt(K) (see definition 0.3) is nonexpansive and If is strictly convex (see definition 1.5) on K, then K has a fixed point on K . Finally, an effort has been made to investigate the properties of the set of fixed points of a pointtoset mappings.
In Chapter II, we have confined ourselves to a reflexive Banach space X which has a weakly continuous duality map J (see definition 2.3) and X has a strictly convex norm. On such a special space we are able to prove that a nonexpansive mapping f : X → cc(X) such that f(x)ʗ K, for any x in a closed convex bounded subset K of X , has a fixed point. As an application of this result we prove a fixed point theorem for semicontractive mappings (see definition 2.7). F : X → cc(X) such that F(x)ʗK for any x ε K , where K and X are the same as above. .
In the last Chapter, we have proved that if f is strictly nonexpansive on a.Banach space X into cpt(X) and if there is x(o) ε X such that [formula omitted] has a subsequence convergent to a set A ε cpt(X) under the Hausdorff metric D on cpt(X), then f has a fixed point in A . Furthermore we prove that a nonexpansive mapping f : K → cpt(K), where K is a weakly compact convex subset of a metrizable locally convex linear topological space X, has a fixed point in K, provided that a constant k > 0 exists such that the set E(x) = {y ε K ; d(x,y) ≥ kd(y,f(y))} is nonempty and convex and the mapping E : K → k(K), with E(x) defined above, is weakly locally closed (see definition 3.1). Finally the comparisons of the continuities of a pointtoset mapping have been made.

Genre  
Type  
Language 
eng

Date Available 
20110426

Provider 
Vancouver : University of British Columbia Library

Rights 
For noncommercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

DOI 
10.14288/1.0080488

URI  
Degree  
Program  
Affiliation  
Degree Grantor 
University of British Columbia

Campus  
Scholarly Level 
Graduate

Aggregated Source Repository 
DSpace

Item Media
Item Citations and Data
Rights
For noncommercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.