- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Group quantum cohomology
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Group quantum cohomology Mizerski, Maciej
Abstract
Given a finite group G acting on a smooth projective variety X, there exists a G -algebra qA*(X,G) whose structure constants are defined by integrals over moduli spaces of G-equivariant stable maps of Jarvis-Kaufmann-Kimura. It is a deformation of the Fantechi-Göttsche group cohomology, and its invariant part qA*(X,G)G is canonically isomorphic to the Abramovich-Graber-Vistoli orbifold quantum cohomology of the quotient stack [X/G]. We provide the technology to study the associativity of the above algebra, and we prove it for some special cases.
Item Metadata
Title |
Group quantum cohomology
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2007
|
Description |
Given a finite group G acting on a smooth projective variety X, there exists a G -algebra qA*(X,G) whose structure constants are defined by integrals over moduli spaces of G-equivariant stable maps of Jarvis-Kaufmann-Kimura. It is a deformation of the Fantechi-Göttsche group cohomology, and its invariant part qA*(X,G)G is canonically isomorphic to the Abramovich-Graber-Vistoli orbifold quantum cohomology of the quotient stack [X/G]. We provide the technology to study the associativity of the above algebra, and we prove it for some special cases.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-02-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0080431
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.