 Library Home /
 Search Collections /
 Open Collections /
 Browse Collections /
 UBC Theses and Dissertations /
 A duality theory for Banach spaces with the Convex...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
A duality theory for Banach spaces with the Convex PointofContinuity Property Hare, David Edwin George
Abstract
A norm ⋅ on a Banach space X is Fréchet differentiable at x ∈ X if there is a functional ∫∈ X* such that [Formula Omitted] This concept reflects the smoothness characteristics of X. A dual Banach space X* has the RadonNikodym Property (RNP) if whenever C ⊂ X* is weak*compact and convex, and ∈ > 0, there is an x ∈ X and an ⍺ > 0 such that diameter [Formula Omitted] this property reflects the convexity characteristics of X*. Culminating several years of work by many researchers, the following theorem established a strong connection between the smoothness of X and the convexity of X*: Every equivalent norm on X is Fréchet differentiable on a dense set if and only if X* has the RNP. A more general measure of convexity has been recently receiving a great deal of attention: A dual Banach space X* has the weak* Convex PointofContinuity Property (C*PCP) if whenever ɸ ≠ C ⊂ X* is weak*compact and convex, and ∈ > 0, there is a weak*open set V such that V ⋂ C ≠ ɸ and diam V ⋂ C < ∈. In this thesis, we develop the corresponding smoothness properties of X which are dual to C*PCP. For this, a new type of differentiability, called cofinite Fréchet differentiability, is introduced, and we establish the following theorem: Every equivalent norm on X is cofinitely Fréchet differentiable everywhere if and only if X* has the C*PCP. Representing joint work with R. Deville, G. Godefroy and V. Zizler, an alternate approach is developed in the case when X is separable. We show that if X is separable, then every equivalent norm on X which has a strictly convex dual is Fréchet differentiable on a dense set if and only if X* has the C*PCP, if and only if every equivalent norm on X which is Gâteaux differentiable (everywhere) is Fréchet differentiable on a dense set. This result is used to show that if X* does not have the C*PCP, then there is a subspace Y of X such that neither Y* nor (X/Y)* have the C*PCP, yet both Y and X/Y have finite dimensional Schauder decompositions. The corresponding result for spaces X* failing the RNP remains open.
Item Metadata
Title 
A duality theory for Banach spaces with the Convex PointofContinuity Property

Creator  
Publisher 
University of British Columbia

Date Issued 
1987

Description 
A norm ⋅ on a Banach space X is Fréchet differentiable at x ∈ X if there is a functional ∫∈ X* such that [Formula Omitted] This concept reflects the smoothness characteristics of X. A dual Banach space X* has the RadonNikodym Property (RNP) if whenever C ⊂ X* is weak*compact and convex, and ∈ > 0, there is an x ∈ X and an ⍺ > 0 such that diameter [Formula Omitted] this property reflects the convexity characteristics of X*.
Culminating several years of work by many researchers, the following theorem established a strong connection between the smoothness of X and the convexity of X*: Every equivalent norm on X is Fréchet differentiable on a dense set if and only if X* has the RNP.
A more general measure of convexity has been recently receiving a great deal of attention: A dual Banach space X* has the weak* Convex PointofContinuity Property (C*PCP) if whenever ɸ ≠ C ⊂ X* is weak*compact and convex, and ∈ > 0, there is a weak*open set V such that V ⋂ C ≠ ɸ and diam V ⋂ C < ∈.
In this thesis, we develop the corresponding smoothness properties of X which are dual to C*PCP. For this, a new type of differentiability, called cofinite Fréchet differentiability, is introduced, and we establish the following theorem: Every equivalent norm on X is cofinitely Fréchet differentiable everywhere if and only if X* has the C*PCP.
Representing joint work with R. Deville, G. Godefroy and V. Zizler, an alternate
approach is developed in the case when X is separable. We show that if X is separable, then every equivalent norm on X which has a strictly convex dual is Fréchet differentiable on a dense set if and only if X* has the C*PCP, if and only if every equivalent norm on X which is Gâteaux differentiable (everywhere) is Fréchet differentiable on a dense set. This result is used to show that if X* does not have the C*PCP, then there is a subspace Y of X such that neither Y* nor (X/Y)* have the C*PCP, yet both Y and X/Y have finite dimensional Schauder decompositions. The corresponding result for spaces X* failing the RNP remains open.

Genre  
Type  
Language 
eng

Date Available 
20100813

Provider 
Vancouver : University of British Columbia Library

Rights 
For noncommercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

DOI 
10.14288/1.0080421

URI  
Degree  
Program  
Affiliation  
Degree Grantor 
University of British Columbia

Campus  
Scholarly Level 
Graduate

Aggregated Source Repository 
DSpace

Item Media
Item Citations and Data
Rights
For noncommercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.