- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Numerical simulation of a nonlinear wave equation and...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Numerical simulation of a nonlinear wave equation and recurrence of initial states Buckley, Albert Grant
Abstract
In 1955 Fermi, Pasta and Ulam (FPU) [7] observed an unusual recurrence to initial state in numerical solutions of a nonlinear wave equation. Zabusky and Kruskal (ZK) [47] have subsequently found an explanation for this phenomenon based on special travelling wave solutions ("solitons") of the (nonlinear) Korteweg de Vries (KdV) equation. In this thesis we extend ZK's explanation to a similar nonlinear wave equation given by Johnson[14]. We investigate existence and uniqueness of solitons for a (nonlinear) generalization of the KdV equation. (Chapter II) and present computational results to illustrate ZK's soliton explanation of the recurrence, both for FPU's equation and Johnson's equation (Chapter III). In Chapter IV we give some results concerning the stability of the difference schemes used to obtain solutions to the nonlinear partial differential equations.
Item Metadata
Title |
Numerical simulation of a nonlinear wave equation and recurrence of initial states
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1972
|
Description |
In 1955 Fermi, Pasta and Ulam (FPU) [7] observed an unusual recurrence to initial state in numerical solutions of a nonlinear wave equation. Zabusky and Kruskal (ZK) [47] have subsequently found an explanation for this phenomenon based on special travelling wave solutions ("solitons") of the (nonlinear) Korteweg de Vries (KdV) equation.
In this thesis we extend ZK's explanation to a similar nonlinear wave equation given by Johnson[14]. We investigate existence and uniqueness
of solitons for a (nonlinear) generalization of the KdV equation. (Chapter II) and present computational results to illustrate ZK's soliton explanation of the recurrence, both for FPU's equation and Johnson's equation (Chapter III). In Chapter IV we give some results concerning the stability of the difference schemes used to obtain solutions to the nonlinear partial differential equations.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-02-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0080359
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.