- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- On numerical homotopy invariants and homotopy functors
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
On numerical homotopy invariants and homotopy functors Chen, Dien Wen
Abstract
The main object of study in this paper is the "Smash Functor" BΛ-, which associates to a space X the smash product BX = BΛX. We find that various numerical homotopy invariants, such as strong category, weak category, Lusternik-Schnirelmann category, and in the case where X is a co-group, the nil-potency do not increase under the smash functor, i.e. we have CatBX ≤ CatX, catBX ≤ catX, WcatBX ≤ WcatX and nilBX ≤ nilX. We then consider the particular case of the smash functor where B = A⁺ (disjoint union of A with a point) in which case BX = [sup AxX]/A. This functor actually preserves L-S category. Furthermore we show that (in the category of based spaces of the based homotopy type of CW-complexes) when X is a co-H space, then the spaces [sup AxX]/A and XV(AX) are homotopy equivalent; this is a generalization of [sup A x ΣB]/A ≃ ΣBv(AΣB) . We also investigate conditions a functor F has to satisfy in order to have the properties we found for BΛ- . Finally, we collect a few counterexamples to show that the duals of some of our results are false.
Item Metadata
Title |
On numerical homotopy invariants and homotopy functors
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1972
|
Description |
The main object of study in this paper is the "Smash Functor" BΛ-, which associates to a space X the smash product BX = BΛX. We find that various numerical homotopy invariants, such as strong category, weak category, Lusternik-Schnirelmann category, and in the case where X is a co-group, the nil-potency do not increase under the smash functor, i.e. we have CatBX ≤ CatX, catBX ≤ catX, WcatBX ≤ WcatX and nilBX ≤ nilX.
We then consider the particular case of the smash functor where B = A⁺ (disjoint union of A with a point) in which case BX =
[sup AxX]/A.
This functor actually preserves L-S category. Furthermore we show that (in the category of based spaces of the based homotopy type of CW-complexes) when X is a co-H space, then the spaces [sup AxX]/A and XV(AX) are homotopy equivalent; this is a generalization of
[sup A x ΣB]/A ≃ ΣBv(AΣB) . We also investigate conditions a functor F has to satisfy in order to have the properties we found for BΛ- .
Finally, we collect a few counterexamples to show that the duals of some of our results are false.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-03-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0080355
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.