UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Random series of functions and Baire category Babinchuk, Wayne George


In much of the work done on random series of functions, little attention has been given to the categorical questions that may arise. For example, a common technique is to let ε = {ε [sub n]}[sup ∞ sub n = 0] be a sequence of independent random variables, each taking the values ±1 with probability ½, and to consider the series [sup ∞]∑ [sub n = 0] ε[sub n]c[sub n] cos nt; then one can seek conditions on the coefficients {c[sub n]}[sup ∞ sub n = 0] that almost surely guarantee that the series converges or that it belongs to a certain function space. But one may also ask if this series converges for a set of e of second category or if it belongs to a particular space for such a set of ε. This thesis follows the first seven chapters of J.-P. Kahane's book Some Random Series of Functions and raises these kinds of categorical questions about the topics presented there.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.