- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Elliptic curves with rational 2-torsion and related...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Elliptic curves with rational 2-torsion and related ternary Diophantine equations Mulholland, Jamie Thomas
Abstract
Our main result is a classification of elliptic curves with rational 2-torsion and good reduction outside 2, 3 and a prime p. This extends the work of Hadano and, more recently, Ivorra. A key factor in doing this is to have a method for efficiently computing the conductor of an elliptic curve with 2-torsion. We specialize the work of Papadopolous to provide such a method. Next, we determine all the rational points on the hyper-elliptic curves y² = x⁵ ± 2a 3b . This information is required in providing the classification mentioned above. We show how the commercial mathematical software package MAGMA can be used in solving this problem. As an application, we turn our attention to the ternary Diophantine equations xn + yn = 2a pz² and x³ + y³ = ± pm zn, where p denotes a fixed prime. In the first equation, we show that for p = 5 or p > 7 the equation is unsolvable in integers (x, y, z) for all suitably large primes n. In the second equation, we show the same conclusion holds for an infinite collection of primes p. To do this, we use the connections between Galois representations, modular forms, and elliptic curves which were discovered by Frey, Hellegouarch, Serre, and Wiles.
Item Metadata
Title |
Elliptic curves with rational 2-torsion and related ternary Diophantine equations
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2006
|
Description |
Our main result is a classification of elliptic curves with rational 2-torsion and good reduction outside 2, 3 and a prime p. This extends the work of Hadano and, more recently, Ivorra. A key factor in doing this is to have a method for efficiently computing the conductor of an elliptic curve with 2-torsion. We specialize the work of Papadopolous to provide such a method. Next, we determine all the rational points on the hyper-elliptic curves y² = x⁵ ± 2a 3b . This information is required in providing the classification mentioned above. We show how the commercial mathematical software package MAGMA can be used in solving this problem. As an application, we turn our attention to the ternary Diophantine equations xn + yn = 2a pz² and x³ + y³ = ± pm zn, where p denotes a fixed prime. In the first equation, we show that for p = 5 or p > 7 the equation is unsolvable in integers (x, y, z) for all suitably large primes n. In the second equation, we show the same conclusion holds for an infinite collection of primes p. To do this, we use the connections between Galois representations, modular forms, and elliptic curves which were discovered by Frey, Hellegouarch, Serre, and Wiles.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-01-18
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0080089
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.