- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Stone’s original and symmetric factorization procedure...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Stone’s original and symmetric factorization procedure : contrasts and comparisons Kusiak, Robert A.
Abstract
The numerical solution of elliptic boundary value problems on rectangular regions with Dirichlet boundary conditions is considered. The well-known finite difference scheme is used to discretize the continuous problem. The solution is now expressed as the unknown vector in a high order matrix equation. In general, efficient direct methods for obtaining the solution of the matrix equation are not known. There are several well-known iteration schemes commonly used to solve such problems. The main disadvantage of these methods is that the number of computations which are required to solve the matrix equation increases in a nonlinear way with the number of equations to be solved. Stone's original and symmetric strongly implicit factorization procedure are considered. The known results concerning the convergence properties of each iteration are presented. A new result concerning the symmetric factorization is presented and the results of numerical investigations are presented.
Item Metadata
Title |
Stone’s original and symmetric factorization procedure : contrasts and comparisons
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1974
|
Description |
The numerical solution of elliptic boundary value problems on rectangular regions with Dirichlet boundary conditions is considered. The well-known finite difference scheme is used to discretize the continuous problem. The solution is now expressed as the unknown vector in a high order matrix equation. In general, efficient direct methods for obtaining the solution of the matrix equation are not known. There are several well-known iteration schemes commonly used to solve such problems. The main disadvantage of these methods is that the number of computations which are required to solve the matrix equation increases in a nonlinear
way with the number of equations to be solved. Stone's original and symmetric strongly implicit factorization procedure are considered. The known results concerning the convergence properties of each iteration are presented. A new result concerning the symmetric factorization is presented and the results of numerical investigations are presented.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-01-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0079503
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.