UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Strain induced martensitic transformation in Cu-Al-Ni Oishi, Kazumasa

Abstract

A study has been made of super-elasticity and the strain-memory effect in Cu-Al-Ni alloys in the composition range 14 wt. % Al and 2 to 6 wt. % Ni. These alloys have a bcc structure on quenching and show a low temperature transformation to a body-centered orthorhombic martensitic structure. It is this transformation that is responsible for the super-elastic and strain-memory effects. Tests on both single and polycrystalline specimens showed that the maximum super-elasticity occurred close to As. At higher temperatures the effect gradually decreased, whilst at lower temperatures it decreased very quickly. The magnitude of the effect was large in single crystal specimens (> 6%), but small in polycrystal specimens (< 1.5%). The super-elastic effect was caused by stress-induced martensite (SIM). Two types of SIM were observed: thin plates of thermoelastic martensite which was always reversible, and wide plates of burst-type martensite. This burst-type martensite was responsible for the major portion of SIM, and whether it was reversible or not on removal of the stress controlled the amount of super-elasticity observed. The strain-memory effect occurred on deformation either in the martensitic state (temperature

Item Media

Item Citations and Data

License

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Usage Statistics