- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The effects of carbon dioxide upon recovery after submaximal...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The effects of carbon dioxide upon recovery after submaximal exercise Lee, Jim H. (James Henry)
Abstract
Nine male Physical Education students were selected to test the hypothesis that addition of CO₂ to the inspired air during recovery will cause significant increases in ventilation above control conditions and that recovery from submaximal exercise will be enhanced by the addition of 2.78% or 5.80% CO₂ to room air. The exercise was administered for six minutes at a workload predetermined to elicit 75% of his maximal oxygen uptake. The dependent variables (heart rate, ventilation, oxygen uptake, and carbon dioxide elimination) were subjected to a one way analysis of variance and significant F ratios evaluated using Dunnett's Test. Ventilation is increased significantly (p<.05) above control values with the addition of 5.80% CO₂ to room air during recovery however, there is no significant increase in oxygen uptake. The addition of 2.78% CO₂ to room air during recovery does not significantly (p>.05) increase ventilation; there is however a significant (p<.05) increase in oxygen uptake in the first 30 seconds of recovery. Neither treatment effect causes significant changes in heart rate. The addition of 5.80% CO₂ to the inspired air significantly (p<.05) reduces carbon dioxide elimination. In 4 subjects, the effect produced a carbon dioxide uptake at certain time intervals. The addition of 2.78% CO₂ to the inspired air caused a significant (p<.05) reduction of carbon dioxide elimination in the first minute of recovery.
Item Metadata
Title |
The effects of carbon dioxide upon recovery after submaximal exercise
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1974
|
Description |
Nine male Physical Education students were selected to test the hypothesis that addition of CO₂ to the inspired air during recovery will cause significant increases in ventilation above control conditions and that recovery from submaximal exercise will be enhanced by the addition of 2.78% or 5.80% CO₂ to room air. The exercise was administered for six minutes at a workload predetermined to elicit 75% of his maximal oxygen uptake. The dependent variables (heart rate, ventilation, oxygen uptake, and carbon dioxide elimination) were subjected to a one way analysis of variance and significant F ratios evaluated using Dunnett's Test.
Ventilation is increased significantly (p<.05) above control values with the addition of 5.80% CO₂ to room air during recovery however, there is no significant increase in oxygen uptake. The addition of 2.78% CO₂ to room air during recovery does not significantly (p>.05) increase ventilation; there is however a significant (p<.05) increase in oxygen uptake in the first 30 seconds of recovery. Neither treatment effect causes significant changes in heart rate. The addition of 5.80% CO₂ to the inspired air significantly (p<.05) reduces carbon dioxide elimination. In 4 subjects, the effect produced a carbon dioxide uptake at certain time intervals. The addition of 2.78% CO₂ to the inspired air caused a significant (p<.05) reduction of carbon dioxide elimination in the first minute of recovery.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-01-29
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0077324
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.