- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Statistical power for repeated measures anova
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Statistical power for repeated measures anova Potvin, Patrick John
Abstract
Determining power a prior for univariate repeated measures (RM) ANOVA designs is a difficult and often excluded practice in the planning of experimental research. Complicated procedures and lack of accessibility to computer power programs are among some of the problems which have discouraged researchers from perforrning power analysis on these designs. Another more serious issue has been the lack of methods available for estimating power of designs with two or more R M factors. Due to uncertainties on how to compute an appropriate error term when more than one variance-covariance matrix exists, analytical methods for approximating power are currently restricted to R M designs with only one withinsubjects variable. The purpose of this study therefore, was to facilitate the process of power detennination by providing a series of power tables for ANOVA designs with one and two within-subject variables. A secondary objective was to investigate less well known power trends among ANOVA designs having heterogeneous (nonspherical) correlation matrices or two R M factors. Power was generated using analytical and Monte Carlo simulation methods for varying experimental conditions of sample size (5, 10 , 15, 20, 25 & 30), effect size (small, medium & large), alpha (.01, .05 & .10), correlation (.4 & .8), variance-covariance matrix patterns (constant, e=1.00 and trend, e
Item Metadata
Title |
Statistical power for repeated measures anova
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1996
|
Description |
Determining power a prior for univariate repeated measures (RM) ANOVA designs is a difficult
and often excluded practice in the planning of experimental research. Complicated procedures and lack of
accessibility to computer power programs are among some of the problems which have discouraged
researchers from perforrning power analysis on these designs. Another more serious issue has been the lack
of methods available for estimating power of designs with two or more R M factors. Due to uncertainties
on how to compute an appropriate error term when more than one variance-covariance matrix exists,
analytical methods for approximating power are currently restricted to R M designs with only one withinsubjects
variable. The purpose of this study therefore, was to facilitate the process of power detennination
by providing a series of power tables for ANOVA designs with one and two within-subject variables. A
secondary objective was to investigate less well known power trends among ANOVA designs having
heterogeneous (nonspherical) correlation matrices or two R M factors. Power was generated using
analytical and Monte Carlo simulation methods for varying experimental conditions of sample size (5, 10 ,
15, 20, 25 & 30), effect size (small, medium & large), alpha (.01, .05 & .10), correlation (.4 & .8),
variance-covariance matrix patterns (constant, e=1.00 and trend, e
|
Extent |
9196462 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-02-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0077309
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
1996-05
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.