The Open Collections site will undergo maintenance from 4:00 PM - 6:00 PM PT on Wednesday, April 2nd, 2025. During this time, images and the IIIF service will not be available.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Partitioning heterotrophic and rhizospheric soil respiration in a mature Douglas-fir forest Lalonde, Rachelle Germaine

Abstract

Total belowground respiration (R[sub s]) was partitioned into heterotrophic (R[sub h]) and rhizospheric (R[sub r]) respiration to determine the amount of CO₂ originating from each component. The 15-month experiment took place in a 55-year-old coastal Douglas-fir (Pseudotsuga menziesii (Mirbel) France) forest on Vancouver Island, Canada (49°51'N, 125°19'W). R[sub s] was measured within cylinders (10 cm in diameter and 7 cm long) installed 2 cm into the soil. R[sub h] was measured within longer cylinders (10 cm in diameter and 55 cm long) from which roots, hyphae, and associated rhizosphere organisms where excluded by a 0.5-micron nylon mesh. These cylinders were installed 50 cm into the soil. R[sub r] was calculated as the difference between the two measured respiration rates (R[sub s] and R[sub h]) R[sub s] was 12 Mg C ha⁻¹ yr⁻¹ and ranged from 0.71 to 6.57 g C m⁻²day⁻¹ over the 15- month experiment. R[sub h] was 7.8 Mg C ha⁻¹ yr⁻¹, which contributed 65% of R[sub s] mostly between May and August. R[sub r] was 4.2 Mg C ha⁻¹ yr⁻¹ (35% of R[sub s]) and peaked in spring and fall. Soil temperature could describe the variability in R[sub s] (p=0.0004) better than soil moisture (p=0.6156) and Q₁₀ values for R[sub s] and R[sub h] were 1.7 and 2.2, respectively. Also measured were potential sources of error associated with using this sampling technique such as: respiration resulting from decaying severed roots inside meshed cylinders, disturbance of cylinder installation, and lateral diffusion of CO₂ through the mesh.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.