- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Interconnect driver design for long wires in field-programmable...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Interconnect driver design for long wires in field-programmable gate arrays Lee, Edmund
Abstract
Designers of field-programmable gate arrays (FPGAs) are always striving to improve the performance of their designs. As they migrate to newer process technologies in search of higher speeds, the challenge of interconnect delay grows larger. For an FPGA, this challenge is crucial since most FPGA implementations use many long wires. A common technique used to reduce interconnect delay is repeater insertion. Recent work has shown that FPGA interconnect delay can be improved by using unidirectional wires with a single driver at only one end of a wire. With this change, it is now possible to consider interconnect optimization techniques such as repeater insertion. In this work, a technique to construct switch driver circuit designs is developed. Using this method, it is possible to determine the driver sizing, spacing and the number of stages of the circuit design. A computer-aided design model of the new circuit designs is developed to assess the impact they have on the delay performance of FPGAs. Results indicate that, by using the presented circuit design technique, the critical path can be reduced by 19% for short wires, and up to 40% for longer wires.
Item Metadata
Title |
Interconnect driver design for long wires in field-programmable gate arrays
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2006
|
Description |
Designers of field-programmable gate arrays (FPGAs) are always striving to improve the performance of their designs. As they migrate to newer process technologies in search of higher speeds, the challenge of interconnect delay grows larger. For an FPGA, this challenge is crucial since most FPGA implementations use many long wires. A common technique used to reduce interconnect delay is repeater insertion. Recent work has shown that FPGA interconnect delay can be improved by using unidirectional wires with a single driver at only one end of a wire. With this change, it is now possible to consider interconnect optimization techniques such as repeater insertion. In this work, a technique to construct switch driver circuit designs is developed. Using this method, it is possible to determine the driver sizing, spacing and the number of stages of the circuit design. A computer-aided design model of the new circuit designs is developed to assess the impact they have on the delay performance of FPGAs. Results indicate that, by using the presented circuit design technique, the critical path can be reduced by 19% for short wires, and up to 40% for longer wires.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-01-16
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0065606
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2006-11
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.