UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Decoupling capacitor design issues in 90nm CMOS Meng, Xiongfei

Abstract

On-chip decoupling capacitors (decaps) are widely used to reduce power supply noise. Typically, designs use NMOS decaps between standard-cell blocks and NMOS+PMOS decaps within the blocks. Starting at the 90nm CMOS technology node, the traditional decap designs may no longer be suitable due to increased concerns regarding thin-oxide gate leakage and electrostatic discharge (ESD) reliability. This thesis investigates new decap design approaches that address gate leakage and ESD. A cross-coupled design is described that has been recently introduced by cell library developers to handle ESD problems. Three modifications of the cross-coupled design are introduced here and the tradeoffs among transient response, gate leakage and ESD performance are analyzed. The modifications offer designers greater flexibility in decoupling capacitor design for 90nm and below. To improve the power-grid noise reduction capability in the areas between blocks, two versions of a switched-decap design are proposed. One provides excellent decap performance but consumes large power, whereas the other saves power but suffers from excessive delay. A novel low-power voltage regulator using switched decaps is proposed to better balance performance and power consumption.

Item Media

Item Citations and Data

License

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Usage Statistics