- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- VLSI implementable associative memory based on neural...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
VLSI implementable associative memory based on neural network architecture Mok, Winston Ki-Cheong
Abstract
Neural network associative memories based on Hopfield's design have two failure modes. 1) Certain memories are not recallable as they do not lie in a local minimum of the system's Liapunov (energy) function, and 2) the associative memory converges to a non-memory location due to trapping by spurious local minima in the energy function surface. The properties of the first failure mechanism in the Hopfield and five related models were investigated. A new architecture eliminating such failures is proposed. The architecture is fully digital and modular. Furthermore, it is more silicon-area efficient than any of the analyzed models. VLSI circuits built using this architecture will be able to contain a large number of neurons and several circuits may be connected together to further increase capacity.
Item Metadata
| Title |
VLSI implementable associative memory based on neural network architecture
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
1989
|
| Description |
Neural network associative memories based on Hopfield's design have two failure modes. 1) Certain memories are not recallable as they do not lie in a local minimum of the system's Liapunov (energy) function, and 2) the associative memory converges to a non-memory location due to trapping by spurious local minima in the energy function surface. The properties of the first failure mechanism in the Hopfield and five related models were investigated. A new architecture eliminating such failures is proposed. The architecture is fully digital and modular. Furthermore, it is more silicon-area efficient than any of the analyzed models. VLSI circuits built using this architecture will be able to contain a large number of neurons and several circuits may be connected together to further increase capacity.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2010-08-30
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
| DOI |
10.14288/1.0064936
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Campus | |
| Scholarly Level |
Graduate
|
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.