- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Removal of heavy metals using granular coal
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Removal of heavy metals using granular coal Riaz, Muhammad
Abstract
In view of very high toxicity potential of some heavy metals to aquatic life, there is a need for critical evaluation of known methods and development of new methods for purifying water and waste-water containing heavy metals. In this study, batch tests were performed to evaluate the relative efficiencies of six British Columbia coals in removing heavy metals (copper, lead, mercury and zinc) from water. On the basis of batch test data obtained, the best two coals, Kaiser Coal-Stock Pile Refuse and Kaiser Coal-Special Plant Feed, were tested on a continuous flow laboratory scale. The emphasis was placed on metal concentrations of 2 mg/1 and less for copper, lead and zinc and 5 vg/1 for mercury. The effects of adsorbate concentration, flow rate through the column (contact time), and pH of the solution on the adsorptive capacity of coal were investigated. A solution containing 0.5 mg/1 of each of copper, lead and zinc was tested to investigate the ability of the coal to remove metals from a mixture of many metals. The adsorptive capacity of the best two coals was also compared with some commercially available adsorbents. On the basis of capacity and rate of adsorption, Kaiser Coal-Stock Pile Refuse was found to be the best of the six coals tested. For the specific testing conditions in this investigation, the better metal-removing efficiency of coal as compared with activated carbon and nitrohumic acid indicate that the coal may be a feasible alternate to purify effluents containing heavy metals
Item Metadata
Title |
Removal of heavy metals using granular coal
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1974
|
Description |
In view of very high toxicity potential of some heavy metals to aquatic life, there is a need for critical evaluation of known methods and development of new methods for purifying water and waste-water containing heavy metals. In this study, batch tests were performed to evaluate the relative efficiencies of six British Columbia coals in removing heavy metals (copper, lead, mercury and zinc) from water. On the basis of batch test data obtained, the best two coals, Kaiser Coal-Stock Pile Refuse and Kaiser Coal-Special Plant Feed, were tested on a continuous flow laboratory scale. The emphasis was placed on metal concentrations of 2 mg/1 and less for copper, lead and zinc and 5 vg/1 for mercury. The effects of adsorbate concentration, flow rate through the column (contact time), and pH of the solution on the adsorptive capacity of coal were investigated. A solution containing 0.5 mg/1 of each of copper, lead and zinc was tested to investigate the ability of the coal to remove metals from a mixture of many metals. The adsorptive capacity of the best two coals was also compared with some commercially available adsorbents. On the basis of capacity and rate of adsorption, Kaiser Coal-Stock Pile Refuse was found to be the best of the six coals tested. For the specific testing conditions in this investigation, the better metal-removing efficiency of coal as compared with activated carbon and nitrohumic acid indicate that the coal may be a feasible alternate to purify effluents containing heavy metals
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-02-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0063014
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.