The Open Collections site will be undergoing maintenance 8-11am PST on Tuesday Dec. 3rd. No service interruption is expected, but some features may be temporarily impacted.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Kinetics of the cis-trans isomerization of azobenzene
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Kinetics of the cis-trans isomerization of azobenzene Ciccone, Stefania
Abstract
The catalytic effects of several acids and metal salts on the cis-trans isomerization of azobenzene in aqueous ethanol were examined kinetically. The effect of perchloric acid is apparently due to H⁺ ions: a catalytic mechanism involving the formation of the conjugate acid of azobenzene has been postulated to interpret these results. To account for the much higher catalytic activity found for hydrochloric acid, an additional path, involving catalysis by undissociated HCl molecules has been proposed. Acetic acid was found to be inactive. Of the metal salts examined only those of Cu⁺⁺ shoved pronounced catalytic activity, which is interpreted in terms of a catalytic mechanism involving coordination of cupric ions with the azo group. Simultaneous coordination of Cu⁺⁺ and H⁺ has been proposed to account for the high catalytic activity of cupric salts in the presence of acids.
Item Metadata
Title |
Kinetics of the cis-trans isomerization of azobenzene
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1959
|
Description |
The catalytic effects of several acids and metal salts on the cis-trans isomerization of azobenzene in aqueous ethanol were examined kinetically. The effect of perchloric acid is apparently due to H⁺ ions: a catalytic mechanism involving the formation of the conjugate acid of azobenzene has been postulated to interpret these results. To account for the much higher catalytic activity found for hydrochloric acid, an additional path, involving catalysis by undissociated HCl molecules has been proposed. Acetic acid was found to be inactive. Of the metal salts examined only those of Cu⁺⁺ shoved pronounced catalytic activity, which is interpreted in terms of a catalytic mechanism involving coordination of cupric ions with the azo group. Simultaneous coordination of Cu⁺⁺ and H⁺ has been proposed to account for the high catalytic activity of cupric salts in the presence of acids.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-01-24
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0062231
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.