- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The kinetics and spectroscopy of the recombination...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The kinetics and spectroscopy of the recombination of chlorine atoms in a low pressure flow system Bader, Laurence Wayne
Abstract
The kinetics of the recombination of chlorine atoms has been studied in a fast flow system in the pressure range 0.2 to 2.0 mm Hg. The gas phase recombination was found to follow the reaction
CI + CI + M→C1₂ + M (1) with (formula omitted). Rate constants were determined for He and C1₂ as third bodies in the reaction where k₁C1₂ = 2.45 x 10¹⁶cm⁶moles⁻²sec⁻¹ and k₁He = 0.3x l0¹⁶cm⁶moles⁻²sec ⁻¹
Concurrent with this reaction was a surface recombination which may be written C1 + wall → ½C1₂ + wall (26) having a surface recombination coefficient ɤ = 6.81 x 10⁻⁵, calculated from k₂₆ = 3.9 sec⁻¹. No low pressure change in the kinetic order could be detected under the experimental conditions used.
The emission accompanying the recombination was found to be a band spectrum of a (formula omitted) transition. The emission decayed according to the relation (formula omitted) indicating that the (formula omitted) state is formed in some atom recombination process.
Item Metadata
| Title |
The kinetics and spectroscopy of the recombination of chlorine atoms in a low pressure flow system
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
1964
|
| Description |
The kinetics of the recombination of chlorine atoms has been studied in a fast flow system in the pressure range 0.2 to 2.0 mm Hg. The gas phase recombination was found to follow the reaction
CI + CI + M→C1₂ + M (1) with (formula omitted). Rate constants were determined for He and C1₂ as third bodies in the reaction where k₁C1₂ = 2.45 x 10¹⁶cm⁶moles⁻²sec⁻¹ and k₁He = 0.3x l0¹⁶cm⁶moles⁻²sec ⁻¹
Concurrent with this reaction was a surface recombination which may be written C1 + wall → ½C1₂ + wall (26) having a surface recombination coefficient ɤ = 6.81 x 10⁻⁵, calculated from k₂₆ = 3.9 sec⁻¹. No low pressure change in the kinetic order could be detected under the experimental conditions used.
The emission accompanying the recombination was found to be a band spectrum of a (formula omitted) transition. The emission decayed according to the relation (formula omitted) indicating that the (formula omitted) state is formed in some atom recombination process.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2011-09-22
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
| DOI |
10.14288/1.0062131
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Campus | |
| Scholarly Level |
Graduate
|
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.