- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Solutions in difluorophosphoric acid
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Solutions in difluorophosphoric acid Reed, William
Abstract
The physical and inorganic chemistry of solutions in difluorophosphoric acid, HPO₂F₂, has been studied, as part of a general study of solutions in non-aqueous protonic solvents. Difluorophosphoric acid is a colourless, associated liquid which might be expected to have solvent properties similar to those of other protonic systems such as H₂O, H₂SO₄ and HSO₃F. However, electrical conductivity studies of solutions of various electrolytes and nuclear magnetic resonance studies of solutions of alkali metal difluorophosphates indicate that the acid is a poor solvent for electrolytes and that ion-pairing is probably extensive. Acid-base behaviour in HPO₂F₂ has been extensively investigated. Compounds which behave as bases in this system include metal difluorophosphates, chlorides, nitrates and carbonates, organic amines, and some organic nitro-compounds and carboxylic acids. Inorganic molecules such as H₂SO₄, HSO₃F and SbF₅ behave as acids. Reaction between an acid and a base in HPO₂F₂ commonly result in the formation of an insoluble salt. The reaction between KPO₂F₂ and SbF₅, for example, has been used to prepare the new compound KSbF₅PO₂F₂. To further investigate the factors affecting acid strengths, cryoscopic and electrical conductivity studies of various inorganic oxy-acids were carried out in nitrobenzene, as solvent. The acids H₂SO₄, HSO₃F and HPO₂F₂ appeared to be virtual non-electrolytes in nitrobenzene, with H₂SO₄ apparently exhibiting some polymerization.
Item Metadata
Title |
Solutions in difluorophosphoric acid
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1968
|
Description |
The physical and inorganic chemistry of solutions in difluorophosphoric acid, HPO₂F₂, has been studied, as part of a general study of solutions in non-aqueous protonic solvents.
Difluorophosphoric acid is a colourless, associated liquid which might be expected to have solvent properties similar to those of other protonic systems such as H₂O, H₂SO₄ and HSO₃F. However, electrical conductivity studies of solutions of various electrolytes and nuclear magnetic resonance studies of solutions of alkali metal difluorophosphates indicate that the acid is a poor solvent for electrolytes and that ion-pairing is probably extensive.
Acid-base behaviour in HPO₂F₂ has been extensively investigated. Compounds which behave as bases in this system include metal difluorophosphates, chlorides, nitrates and carbonates, organic amines, and some organic nitro-compounds and carboxylic acids. Inorganic molecules such as H₂SO₄, HSO₃F and SbF₅ behave as acids. Reaction between an acid and a base in HPO₂F₂ commonly result in the formation of an insoluble salt. The reaction between KPO₂F₂ and SbF₅, for example, has been used to prepare the new compound KSbF₅PO₂F₂.
To further investigate the factors affecting acid strengths, cryoscopic and electrical conductivity studies of various inorganic oxy-acids were carried out in nitrobenzene, as solvent. The acids H₂SO₄, HSO₃F and HPO₂F₂ appeared to be virtual non-electrolytes in nitrobenzene, with H₂SO₄ apparently exhibiting some polymerization.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-09-15
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0062129
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.