- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The photodissociation processes of ketene at 3130 A,...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The photodissociation processes of ketene at 3130 A, 3340 A and 3650 A Taylor, Gladstone Altamont
Abstract
Previous research on the photolysis of ketene has shown that the kinetics of photodissociation processes were not fully understood and that more accurate data were needed to evaluate the mechanism of the rate of dissociation of the electronically and vibrationally excited molecules. There was some evidence that the primary quantum yields at shorter wavelengths extrapolated to a value greater than unity at zero pressure, if this were not within experimental error, it would provide evidence for a process of multistage deactivation of the excited ketene molecules. In the kinetic studies of the dissociation of excited molecules, intersystem crossing to the triplet state had been included to account for phosphorescence. Theoretical consideration from this had led to predictions of the effect of dissociation from the triplet state on the quantum yields of carbon monoxide on the photodissociation of ketene. Experimental verification was now needed to determine the effect, if any, derived from triplet dissociation. Previous attempts have been made to apply the unimolecular theory of dissociation to the photodissociation of excited molecules, but the data available yielded physically impossible results. Hence, only reasonable theoretical values of the parameters involved are given. This research attempted to obtain more accurate data on the quantum yields of ketene at 3130 Å, 3340 Å and 3650 Å at various temperatures. From the results it is now possible to differentiate within the limits of the experiment, between the various theories of the dissociation process. It is established that triplet dissociation is either not a real effect or is small enough to be undetectable under the experimental conditions. It is possible to discount a theory of a cascade collisional deactivation process involving more than three collisions of the excited molecules, but differentiation is not made between one, two and three collisions under experimental conditions. The unimolecular theory of dissociation is applied to the results of the photodissociation process and values determined for the parameters involved. Reasonable agreement with the theoretical predictions is obtained.
Item Metadata
Title |
The photodissociation processes of ketene at 3130 A, 3340 A and 3650 A
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1961
|
Description |
Previous research on the photolysis of ketene has shown that the kinetics of photodissociation processes were not fully understood and that more accurate data were needed to evaluate the mechanism of the rate of dissociation of the electronically and vibrationally excited molecules.
There was some evidence that the primary quantum yields at shorter wavelengths extrapolated to a value greater than unity at zero pressure, if this were not within experimental error, it would provide evidence for a process of multistage deactivation of the excited ketene molecules.
In the kinetic studies of the dissociation of excited molecules, intersystem crossing to the triplet state had been included to account for phosphorescence. Theoretical consideration from this had led to predictions of the effect of dissociation from the triplet state on the quantum yields of carbon monoxide on the photodissociation of ketene. Experimental verification was now needed to determine the effect, if any, derived from triplet dissociation.
Previous attempts have been made to apply the unimolecular theory of dissociation to the photodissociation of excited molecules, but the data available yielded physically impossible results. Hence, only reasonable theoretical values of the parameters involved are given.
This research attempted to obtain more accurate data on the quantum yields of ketene at 3130 Å, 3340 Å and 3650 Å at various temperatures.
From the results it is now possible to differentiate within the limits of the experiment, between the various theories of the dissociation process. It is established that triplet dissociation is either not a real effect or is small enough to be undetectable under the experimental conditions.
It is possible to discount a theory of a cascade collisional deactivation process involving more than three collisions of the excited molecules, but differentiation is not made between one, two and three collisions under experimental conditions.
The unimolecular theory of dissociation is applied to the results of the photodissociation process and values determined for the parameters involved. Reasonable agreement with the theoretical predictions is obtained.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-02-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0062065
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.