- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Studies in radiation chemistry
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Studies in radiation chemistry Shaede, Eric Albert
Abstract
The experimental work presented in this dissertation consists of two separate parts. Firstly, a study of the reaction of hydrated electrons with molecular nitrogen is reported. Secondly, the results of an investigation of the effects of Ƴ-radiation on the polar aprotic solvent, propylene carbonate; (a) in the glassy solid state at 77 °K, and (b) as a liquid at room temperature, are presented. Hydrated electrons were generated by Ƴ-radiolysis of aqueous solutions containing H₂ and 0H⁻ and also containing N₂ at concentrations up to 0.1 M (200 atm pressure). Significant yields of ammonia were obtained, but by completely eliminating the gas space above the solution it was shown that the majority of the NH₃ arose through "direct action" of the radiation on dissolved N₂. Although the hydrated electron is one of the most powerful and reactive reducing agents, it is unable to cause reduction fixation of molecular nitrogen. An upper limit of k₁
Item Metadata
Title |
Studies in radiation chemistry
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1971
|
Description |
The experimental work presented in this dissertation consists of two separate parts. Firstly, a study of the reaction of hydrated electrons with molecular nitrogen is reported. Secondly, the results of an investigation of the effects of Ƴ-radiation on the polar aprotic solvent, propylene
carbonate; (a) in the glassy solid state at 77 °K, and (b) as a liquid at room temperature, are presented.
Hydrated electrons were generated by Ƴ-radiolysis of aqueous solutions containing H₂ and 0H⁻ and also containing N₂
at concentrations up to 0.1 M (200 atm pressure). Significant
yields of ammonia were obtained, but by completely eliminating the gas space above the solution it was shown that the majority of the NH₃ arose through "direct action" of the radiation on dissolved N₂. Although the hydrated electron is one of the most powerful and reactive reducing agents, it is unable to cause reduction fixation of molecular nitrogen. An upper limit of k₁
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-04-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0060056
|
URI | |
Degree (Theses) | |
Program (Theses) | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.