The Open Collections site will be undergoing maintenance 8-11am PST on Tuesday Dec. 3rd. No service interruption is expected, but some features may be temporarily impacted.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Studies on the hydrated electron Kenney, Geraldine Anne

Abstract

This describes a study of some unusual features of the hydrated electron, [symbol omitted] in particular the kinetics of its decay during a period of non-homogeneity lasting tens of nanoseconds, the formation and photodissociation of a hydrated dielectron species [symbol omitted], and the photoexcitation of [symbol omitted]. Nanosecond pulse radiolysis (p.r.) studies on the kinetic behaviour of [symbol omitted](> 10⁻⁴ M) in pure deaerated water revealed a complicated interplay of mechanisms for the first half life ∼110 nsec. This is partly attributable to an initial non-homogeneity in the distribution of reacting species within the system, because the spurs are essentially isolated for tens of nanoseconds. Calculations based on a qualitative model revealed that the times necessary for spur-overlap through diffusion (during which > 40% [symbol omitted] were lost to reaction) were in agreement with experimental observations. However the anomalous trends in κ, a rate parameter describing [formula omitted] within this period, led to the subsequent discovery of a process by which [symbol omitted] were formed after the electron pulse. The use of selective ion and radical scavengers strongly implied that the increase in [symbol omitted] occurred via another radiolytic product, XB. Three plausible mechanisms have been outlined in which XB is (e_ ) [formulae omitted]. XB undoubtedly affects the values of κ but it is not possible at this time to discard the notion of microscopic non-homogeneity within the spur itself as the trends in κ might suggest. Four conclusions are drawn; (i) in some p.r. studies we may not calculate meaningful second order rate constants with concentrations evaluated from optical density data, (ii) the "instantaneous" yield of [symbol omitted] seen through nsec p.r. is higher than that established through μsec p.r. or steady-state techniques because of the rapid initial loss of [symbol omitted] (iii) but the total [symbol omitted] yield will be less since the latter techniques cannot distinguish the source of [symbol omitted]. (iv) there is a critical need for a nanosecond p.r. yield of [symbol omitted] to establish the true primary yield, [symbol omitted]. Some microsecond flash photolysis (f.p.) experiments were performed on hydrogen saturated alkaline solutions. Hydrated electrons were produced following the ultra-violet photolysis of OH⁻ and reacted bimolecularly to give a species which on subsequent infra-red flash photolysis regenerated [symbol omitted]. This species is postulated to be a hydrated electron dimer [formula omitted] the spin state of which is unspecified The remaining purpose of this work was to photoexcite [symbol omitted]. The nature of the excited state of [symbol omitted] and the origin of the optical absorption band is still open to speculation although Jortner and others have performed calculations in which the transition at λmax is assigned to a 2p + 1s excitation. The photolysis of [symbol omitted] was attempted through both p.r. and f.p. techniques, neither of which yielded any conclusive information because of the presence of XB or [symbol omitted] in the system.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.